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Preface
Notes for MTG 5326.0001 Topology I taught at FSU in Fall 2018 by Dr.

Sam Ballas.
In these notes, the notation A � X means that A is a subset of X, which

may also refer to being an improper subset and 2X refers to the powerset of
X, which we assume to always exist for any X. Although ? is personally
preferred to represent the empty set but in these notes, the symbol ; will take
precedence. The complement of A in X will be denoted by Ac, X � A or even
XnA. Problems which were assigned for homework are scattered in (hopefully)
corresponding sections, sometimes labelled as such while other times, simply
labelled as propositions.

Syllabus

Text: Topology, James Munkres, 2nd Edition optional
Eligibility: Graduate standing or permission of the instructor.
Course Content: This course will cover basic concepts in point set topology.

It will loosely follow Munkres book
Grading: The grade distribution for this course is as follows:

Homework 40%
Midterms 30%
Final Exam 30%

The following numerical grade will guarantee you at least the corresponding
letter grade, although depending on the performance of the class the grade
cuto¤s may be lower:
A: 90-100; B: 80-89; C: 70-79; D: 60-69; F: 0-59.
Plus or minus grades may be assigned. A grade of I (incomplete) will not be

given to avoid a grade of F or to give additional study time. Failure to process
a course drop will result in a course grade of F.
Exams: There will be a 2 midterm exams and a cumulative �nal. These

exams will be taken during class. The exam schedule is as follows:
Exam 1: Thursday, Oct 4
Exam 2: Thursday, Nov 15
Final: Wednesday, Dec 12, 7:30-9:30a.
Homework: In my experience the best way to learn this type of mathemat-

ics is by getting your hands dirty with problems of varying degrees of di¢ culty.
For this reason I place a particular emphasis on homework in this course. There
will be several homework assignments due throughout the semester. I encourage
you to start these assignments well in advance of their due dates and expect
you to spend a good amount of time on each one. I also strongly encourage you
to discuss the problems the problems with your classmates, however, the work
you submit must be your own.
The assignments will be posted on the Canvas page for our course. If you

are enrolled in the course and having di¢ culty accessing the Canvas page please
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contact me immediately so that we can resolve the issue and you don�t end up
missing any homework assignments.
You will be required to TEXthe solutions to your homework assignments.

If you need help getting TEXup and running on your computer please let me
know. I will post a template �le for the homework to give you an idea what
I want your solutions to look like. You are not required to use the template,
but should roughly follow its structure when preparing your homework solu-
tions. You will submit a pdf version of your homework via Canvas. When
submitting I would appreciate if your would follow the naming convention home-
work#N_yourLastName.pdf
At the end of the semester, I will automatically drop your lowest homework

grade.
Expectations: I expect that everyone will maintain a classroom conducive

to learning. I like an informal atmosphere, but it must be orderly. Thus,
everyone is expected to behave with basic politeness, civility, and respect for
others. In particular, talking in class is OK if it�s part of a class discussion or
with me. Private communications are not permitted, especially during quizzes
and tests. I also expect that when you are in class that the mathematics at
hand will receive your undivided attention. Indicators that your attention is
divided include, but are not limited to:

� Texting,

� Using social media (Facebook/Twitter/etc.), or

� Playing games on your cell phone.

University Attendance Policy: Excused absences include documented
illness, deaths in the family and other documented crises, call to active military
duty or jury duty, religious holy days, and o¢ cial University activities. These
absences will be accommodated in a way that does not arbitrarily penalize
students who have a valid excuse. Consideration will also be given to students
whose dependent children experience serious illness.
Academic Honor Policy: The Florida State University Academic Honor

Policy outlines the University�s expectations for the integrity of students�acad-
emic work, the procedures for resolving alleged violations of those expectations,
and the rights and responsibilities of students and faculty members throughout
the process. Students are responsible for reading the Academic Honor Policy
and for living up to their pledge to �...be honest and truthful and ... [to] strive for
personal and institutional integrity at Florida State University." (Florida State
University Academic Honor Policy, found at http://fda.fsu.edu/Academics/AcademicHonor-
Policy.) To summarize, violations of these policies will result in a rather messy
a¤air for you and me, so just don�t do it.
American�s with Disabilities Act: Students with disabilities needing

academic accommodation should: (1) register with and provide documentation
to the Student Disability Resource Center; and (2) bring a letter to the instruc-
tor indicating the need for accommodation and what type. Please note that
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instructors are not allowed to provide classroom accommodation to a student
until appropriate veri�cation from the Student Disability Resource Center has
been provided.
This syllabus and other class materials are available in alternative format

upon request. For more information about services available to FSU students
with disabilities, contact the Student Disability Resource Center
874 Traditions Way
108 Student Services Building Florida State University
Tallahassee, FL 32306-4167
(850) 644-9566 (voice)
(850) 644-8504 (TDD)
sdrc@admin.fsu.edu
http://www.disabilitycenter.fsu.edu/
Syllabus Change Policy: Except for changes that substantially a¤ect

implementation of the evaluation (grading) statement, this syllabus is a guide
for the course and is subject to change with advance notice.
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1 Metric Spaces

De�nition 1 Let X be any non-empty set. A metric de�ned on X is a func-
tion d : X �X �! [0;1) such that

� M1 d(x; y) � 0

� M2 d(x; y) = 0 () x = y

� M3 d(x; y) = d(y; x)

� M4 d(x; y) � d(x; z) + d(z; y)

for x; y; z 2 X. A metric space is a pair (X; d) where X is a set and d is a
metric on X. Metric generalises the concept of distance between two points.

Example 2 A trivial metric which can be de�ned on any set is the discrete
metric, which is de�ned as d(x; y) = 1 for x 6= y and 0 otherwise. Clearly,
d(x; y) � 0; d(x; y) = 0 () x = y and d(x; y) = d(y; x) are satis�ed by
de�nition. d(x; y) � d(x; z) + d(z; y) can be veri�ed exhaustively by considering
cases x 6= y, x = y, x 6= z and x = z.

Example 3 On the real line R, we can de�ne the usual metric d(x; y) =
jx� yj. This can be generalised for the Euclidean plane Rn with metric

d(x;y) =

q
(x1 � y1)2 + (x2 � y2)2 + :::+ (xn � yn)2

For n = 1, we have
q
(x1 � y1)2 = jx� yj . For n = 2, we have the familiar

Pythagorean Theorem in a plane. This metric is the generalized Pythagorean
Theorem in Rn.

The above can be generalised as follows:

Problem 4 Let p > 0 and de�ne dp : Rn�Rn �! Rn by dp ((x1; :::; xn) ; (y1; :::; yn)) =
(jx1 � y1jp + :::+ jxn � ynjp)

1=p

1. Show that if p � 1 then dp gives a metric on Rn. This metric is called the
LP metric

2. Show that if 0 < p < 1 then dp does not give a metric on Rn

Solution 5 1. Let x = (x1; :::; xn) and y = (y1; :::; yn). Let i 2 f1; :::; ng. For
M1, since xi; yi 2 R =) xi � yi 2 R by closure of addition =) jxi � yij 2 R+
because valuation on a �eld is positive-valued. Hence for p = 1, d1 (x; y) =
max
1�i�n

fjxi � yijg 2 R+ : Now, let 1 � p < 1. Then, jxi � yij 2 R+ =)

jxi � yijp 2 R+ by closure of multiplication. By closure of addition,
X

jxi � yijp 2
R+. Again, since R is a (ordered) �eld, for all a 2 R+, there exists a b such
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that bp = a. Letting a =
nX
i=1

jxi � yijp and b = dp (x;y) shows that dp (x;y) is

non-negative and real-valued. M2, for 1 � p <1

dp (x;y) = 0

()
 

nX
i=1

jxi � yijp
!1=p

= 0

()
nX
i=1

jxi � yijp = 0

() jxi � yijp = 0 for all i
() jxi � yij = 0 8p � 1
() xi = yi

() x = y

For p = 1, d1 (x;y) = max
1�i�n

fjxi � yijg = 0 implies jxi � yij = 0 for all i.

Hence xi = yi for all i =) x = y. Next, for M3,

dp (x;y) =

 
nX
i=1

jxi � yijp
!1=p

=

 
nX
i=1

jyi � xijp
!1=p

= dp (y;x)

Similarly, For p = 1, d1 (x;y) = max
1�i�n

fjxi � yijg = max
1�i�n

fjyi � xijg =
d1 (y;x). Finally, for M4, let z = (z1; :::; zn). We start with p = 1. In
this case, we can directly apply the triangle inequality to get the desired result.

d1 (x;y) =
nX
i=1

jxi � yij

=

nX
i=1

jxi � zi + zi � yij

�
nX
i=1

jxi � zij+
nX
i=1

jzi � yij

= d1 (x; z) + d1 (z;y)

For p > 1, we follow the proof found in Kreyzig�s Functional Analysis for
Minkowski�s inequality. Let 1 � i � n. We �rst let q be a natural number
such that 1

p +
1
q = 1 from which we have q+p

pq = 1 and therefore pq � p � q =

0 =) pq � p� q + 1 = 1 =) p (q � 1)� (q � 1) = 1 =) (p� 1) (q � 1) = 1.
Thus,

1

p� 1 = q � 1

Now, let f : R �! R be a function de�ned by f (t) = u = tp�1. We can have
u1=(p�1) = t or f�1 (u) = t = uq�1. Now let a; b 2 R for a; b > 0. If we think of
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ab as an area of a rectangle with sides a and b, then

ab �
aZ
0

f (t) dt+

bZ
0

f�1 (t) dt

=

aZ
0

tp�1dt+

bZ
0

tq�1dt

=
ap

p
+
bq

q
(1)

Now let �i,yi 2 R such that
nX
i=1

j�ij
p
=

nX
i=1

j�ij
q
= 1

Set a = j�ij and b = j�ij and plug values in (1). Then, we have the inequality

j�ij j�ij �
j�ij

p

p
+
j�ij

q

q

Summing over i, we get the inequality

nX
i=1

j�ij j�ij �
nX
i=1

j�ij
p

p
+

nX
i=1

j�ij
q

q

from which we have

nX
i=1

j�ij j�ij =
nX
i=1

j�i�ij �
1

p
+
1

q
= 1 (2)

Now, let
�i =

xi

(� jxijp)
1=p

and
�i =

yi

(� jyijq)
1=q

Then,

j�ij
p
=

jxijp

(� jxijp)
and

j�ij
q
=

jyijq

(� jyijq)
which, on summing over the index i , will yield

nX
i=1

j�ij
p
=

� jxijp

(� jxijp)
and

nX
i=1

j�ij
q
=

� jyijq

(� jyijq)
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both of which equal 1. Hence,

�i =
xi

(� jxijp)
1=p

and �i =
yi

(� jyijq)
1=q

is a valid substitution in (2). We then get

1 �
nX
i=1

����� xi

(� jxijp)
1=p

yi

(� jyijq)
1=q

�����
=)

nX
i=1

jxiyij �
 

nX
i=1

jxijp
!1=p nX

i=1

jyijq
!1=q

which is the famous Hölder inequality. Now, from the triangle inequality, we
note that

jxi + yijp = jxi + yij jxi + yijp�1 � (jxij+ jyij) jxi + yijp�1

Summing over i, we get
nX
i=1

jxi + yijp �
nX
i=1

jxij jxi + yijp�1 +
nX
i=1

jyij jxi + yijp�1 (3)

The �rst term on the right side of the inequality, after applying Holder�s in-
equality, becomes

nX
i=1

jxij jxi + yijp�1 �
 

nX
i=1

jxijp
!1=p nX

i=1

jxi + yij(p�1)q
!1=q

Since pq = p+ q, we must have (p� 1) q = pq � q = p. Hence

nX
i=1

jxij jxi + yijp�1 �
 

nX
i=1

jxijp
!1=p nX

i=1

jxi + yij(p�1)q
!1=q

=

 
nX
i=1

jxijp
!p�1 nX

i=1

jxi + yijp
!1=q

Similarly, the second term of (3) becomes

nX
i=1

jyij jxi + yijp�1 �
 

nX
i=1

jyijp
!1=p nX

i=1

jxi + yijp
!1=q

Hence we have

nX
i=1

jxi + yijp �

0@ nX
i=1

jxijp
!p�1 nX

i=1

jxi + yijp
!1=q1A+

0@ nX
i=1

jyijp
!1=p nX

i=1

jxi + yijp
!1=q1A

=

0@ nX
i=1

jxijp
!1=p

+

 
nX
i=1

jyijp
!1=p1A nX

i=1

jxi + yijp
!1=q
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=)
 

nX
i=1

jxi + yijp
!p�1=q

�
 

nX
i=1

jxijp
!1=p

+

 
nX
i=1

jyijp
!1=p

Since 1
p +

1
q = 1, we must have 1�

1
q =

1
p . Hence the above inequality becomes 

nX
i=1

jxi + yijp
!1=p

�
 

nX
i=1

jxijp
!1=p

+

 
nX
i=1

jyijp
!1=p

Now, replace xi with xi � zi and replace yi with zi � yi to get 
nX
i=1

jxi � zi + zi � yijp
!1=p

=

 
nX
i=1

jxi � yijp
!1=p

= dp (x;y)

�
 

nX
i=1

jxi � zijp
!1=p

+

 
nX
i=1

jzi � yijp
!1=p

= dp (x; z) + dp (z;y)

and M4 is satis�ed for 1 < p <1. For the case of p =1, we have

jxi � yij � jxi � zij+ jzi � yij
� jxi � zij+ max

1�i�n
jzi � yij

� max
1�i�n

jxi � zij+ max
1�i�n

jzi � yij

That is,
jxi � yij � max

1�i�n
jxi � zij+ max

1�i�n
jzi � yij for all i

=) max
1�i�n

jxi � yij � max
1�i�n

jxi � zij+ max
1�i�n

jzi � yij

or that d1 (x;y) � d1 (x; z) + d1 (z;y)
2. Let x = (1; 1; 0; 0; :::; 0), y = (1; 0; :::; 0) and z = (0; ::::; 0) and p 2 (0; 1).

Then, dp (x; z) =

 
nX
i=1

jxi � zijp
!1=p

= 21=p > 2, dp (y; z) = 1 and dp (x;y) = 1

and so dp (x; z) 6� dp (x;y) + dp (y; z). That is, the triangle inequality fails.

Example 6 The case for p = 1 is the metric.

d(x;y) =
nX
i=1

jxi � yij

This is called the taxicab or Manhattan metric.

This example illustrates the important fact that from a given set with more
than one element, we can obtain various metric spaces by choosing di¤erent
metric functions.
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Example 7 A metric similar to the usual metric can also be de�ned for the
complex plane C by using the de�nition of the modulus jzj =

p
x2 + y2 for

z = x+ iy and have a metric. Thus, d (z; w) = jz � wj =
q
(x� u)2 + (y � v)2

where w = u+ iv. Thus, we can now easily generalize this de�nition for Cn by
z = (z1; :::; zn), w = (w1; :::; wn) and

d (z; w) =

q
(x1 � u1)2 + (y1 � v1)2 + :::+ (xn � un)2 + (yn � vn)2

Example 8 As a set l1, we take the set of all bounded sequences of complex (or
real) numbers; that is, every element x of l1 is a complex (resp. real) sequence
x = (�1; �2; :::), brie�y x = (�i). If we have x = (�i) and y = (&i), we can have
the metric de�ned by d(x; y) = supA where A = f�i j �i = j�i � &ijg. This can
be compactly written as

sup
i2N

j�i � &ij

The supremum exists since the set is bounded and is unique. To prove that this is
a metric is easy: M1,M2 andM3 can be easily satis�ed. ForM4, let x = (�i),
y = (&i) and z = (�i). Then, j�i � &ij = j�i � �i + �i � &ij � j�i � �ij+ j�i � &ij
8i

=) j�i � &ij � sup
i2N

j�i � �ij+ j�i � &ij 8i

=) j�i � &ij � sup
i2N

j�i � �ij+ sup
i2N

j�i � &ij 8i

=) sup
i2N

j�i � &ij � sup
i2N

j�i � �ij+ sup
i2N

j�i � &ij

=) d(x; y) � d(y; z) + d(z; x):

Example 9 For C ([a; b] ;R), usually abbreviated as C [a; b], the set of real-
valued functions from [a; b], we have a bona �de metric space under the metric
d(x; y) = max

t2[a;b]
jx (t)� y (t)j.

Example 10 Let S be a non-empty set and let B (S) be the space of bounded
functions on S. De�ne the metric

d(x; y) = sup
t2s

jx (t)� y (t)j

Clearly, d(x; y) � 0. M2,

d(x; y) = 0

() sup
t2S

jx (t)� y (t)j = 0

() jx (t)� y (t)j = 08t 2 S

since if the supremum of non-negative numbers zero, then all the numbers are
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themselves zero. Then, we have x (t) = y (t) 8t 2 S. Hence, x = y. M3,

d(x; y) = sup
t2S

jx (t)� y (t)j

= sup
t2S

j� (x (t)� y (t))j

= sup
t2S

j�x (t) + y (t)j

= sup
t2S

jy (t)� x (t)j

= d (y; x)

Finally,

jx (t)� y (t)j � jx (t)� z (t)j+ jz (t)� y (t)j for all t 2 S
� jx (t)� z (t)j+ sup

t2S
jz (t)� y (t)j

� sup
t2S

jx (t)� z (t)j+ sup
t2S

jz (t)� y (t)j

Thus, sup
t2S

jx (t)� y (t)j � sup
t2S

jx (t)� z (t)j+ sup
t2S

jz (t)� y (t)j.

With the next example, we will explore how to de�ne new metrics from old
ones.

Example 11 Let d (x; y) be a metric. De�ne � (x; y) = d(x;y)
1+d(x;y) . Then, � is

a metric. In fact, let�s have fun and go in�nite dimensional. We can have a
metric on the space s of all bounded and unbounded sequences de�ned as

d(x;y) =
1X
i=1

1

2i
j�i � &ij

1 + j�i � &ij

for x = (�i), y = (&i) 2 R1. Note that j�i � &ij = di (�i � &i) is a metric for all
i.
Proving M1 to M3 is easy. For M4, let z = (�i) such that

j�i � &ij � j�i � �ij+ j�i � &ij

=) 1

1 + j�i � �ij
+

1

1 + j�i � &ij :

� 1

2 + j�i � &ij

� 1

1 + j�i � &ij

7



Note that

d(x; y) =
1X
i=1

1

2i
j�i � &ij

1 + j�i � &ij

=
1X
i=1

1

2i
�1 + 1 + j�i � &ij
1 + j�i � &ij

=
1X
i=1

1

2i

�
1� 1

1 + j�i � &ij

�

=
1X
i=1

1

2i
�

1X
i=1

1

2i
1

1 + j�i � &ij

= 1�
1X
i=1

1

2i
1

1 + j�i � &ij

Since we have 1
2i

1
1+j�i��ij

+ 1
2i

1
1+j�i�&ij:

� 1
2i

1
1+j�i�&ij

, we can equivalently have

1�
1X
i=1

1

2i
1

1 + j�i � �ij
+ 1�

1X
i=1

1

2i
1

1 + j�i � &ij :

� 1�
1X
i=1

1

2i
1

1 + j�i � &ij

which is what is required.

Problem 12 Let (X; d) be a metric space. De�ne d : X�X �! R by d (x; y) =
min (d (x; y) ; 1). Prove that d is also a metric on X.

Such a metric d is called the standard bounded metric associated with
d.

Solution 13 M1 Since d (x; y) 2 R+ for all x; y 2 X therefore d (x; y) =
min (d (x; y) ; 1) 2 R+
M2 d (x; y) = 0 () min (d (x; y) ; 1) = 0 () d (x; y) = 0 () x = y
M3 d (x; y) = min (d (x; y) ; 1) = min (d (y; x) ; 1) = d (y; x)
M4 First, we note that , since d is a metric, it follows that d (x; y) �

d (x; z)+ d (z; y) for all x; y; z 2 X. Also, we note that either min (d (x; y) ; 1) =
d (x; y) or 1. For the former, we must have d (x; y) � 1 for all x; y =)
min (d (x; y) ; 1) � 1. If min (d (x; y) ; 1) = 1, then again min (d (x; y) ; 1) � 1
trivially. Hence d (x; y) � 1 for all x; y in any case. Now, we can reduce the
problem to two cases.
Case I
min (d (x; z) ; 1) = 1 or min (d (z; y) ; 1) = 1. Then, d (x; y) � 1 � 1 + 1 =

min (d (x; z) ; 1) + min (d (z; y) ; 1) = d (x; z) + d (z; y)
Case II

8



min (d (x; z) ; 1) 6= 1 and min (d (z; y) ; 1) 6= 1. It cannot be that min (d (x; z) ; 1) >
1 and min (d (z; y) ; 1) > 1. Thus, we must have min (d (x; z) ; 1) < 1 and
min (d (z; y) ; 1) < 1. Then, min (d (x; z) ; 1) + min (d (z; y) ; 1) = d (x; z) +
d (z; y) � d (x; y) � min (d (x; y) ; 1). That is, d (x; z) + d (z; y) = d (x; z) +
d (z; y) � d (x; y) � d (x; y)
In either case, d (x; y) � d (x; z) + d (z; y) for all x; y; z 2 X.

In general, we have the following:

Proposition 14 Let d be a metric and let f : R+ �! R+ be a function such
that f (0) = 0, f (z + w) � f (z) + f (w) (in this case, f is said to be sub-
additive) and x � y =) f (x) � f (y) (that is, f is non-decreasing). Then,
� (x; y) = f (d (x; y)) is a new metric.

Proof. For 0 � d (x; y), we have 0 = f (0) � f (d (x; y)) = � (x; y) and so
M1 holds. For M2, by f (0) = 0, we have 0 = f (d (x; y)) = � (x; y) ()
d (x; y) = 0 () x = y. For M3, � (x; y) = f (d (x; y)) = f (d (y; x)) = � (y; x).
Finally, d (x; y) � d (x; z)+d (z; y) =) f (d (x; y)) � f (d (x; z) + f (d (z; y))) by
non-decreasing property of f and that f (d (x; z) + f (d (z; y))) � f (d (x; z)) +
f (d (z; y)) by sub-additivity of f from which we have � (x; y) � � (x; z)+� (z; y)
for all x; y; z.

Example 15 f (x) = x
1+x is the �toned-down� example of the above in�nite-

dimensional case. Clearly, f (0) = 0. Also, f 0 (x) = 1
(1+x)2

> 0 so that f is non-

decreasing. Finally, f (z + w) = z
1+z+w +

w
1+z+w �

z
1+z +

w
1+w = f (z) + f (w).

Example 16 Another example is f (x) = dxe, the ceil function. In this case,
f (0) = 0, x � y =) dxe � dye and dx+ ye � dxe+ dye.

Here�s a di¤erent way:

Problem 17 Let (Xi; di) be metric spaces for 1 � i � n. Let Y = X1� :::�Xn

and de�ne d : Y � Y �! R by d (x;y) = max fdi (xi; yi)g for 1 � i � n and
x = (x1; :::; xn) and y = (y1; :::; yn) in Y . Show that d is a metric on Y

Solution 18 For non-negativityM1: di is a metric for all i implies di (xi; yi) �
0 for all i =) max fdi (xi; yi)g � 0 =) d (x;y) � 0. For non-degeneracy
M2, d (x;y) = 0 () max fdi (xi; yi)g = 0. Since maximum is taken over
all non-negative values, then max fdi (xi; yi)g = 0 () di (xi; yi) = 0 for all
i. Hence xi = yi for all i () (x1; x2; :::; xn) = (y1; y2; :::; yn) () x =
y. Symmetry M3: d (x;y) = max fdi (xi; yi)g = max fdi (yi; xi)g = d (y;x).
Triangle inequality M4: let 1 � i � n and z = (z1; z2; :::; zn) 2 Y . Then, since
di (xi; yi) is a metric for each i, it follows that, for all i

di (xi; yi) � di (xi; zi) + di (zi; yi)

� di (xi; zi) + max
i
fdi (zi; yi)g

� max
i
fdi (xi; zi)g+max

i
fdi (zi; yi)g

9



That is, di (xi; yi) � d (x; z) + d (z;y). Since this is true for all i, it must be
true that

max
i
fdi (xi; yi)g � d (x; z) + d (z;y)

In other words, d (x;y) � d (x; z) + d (z;y)

Problem 19 Let (X; dX) and (Y; dY ) be metric spaces. A map f : X �! Y is
called an isometric embedding if dY (f (x) ; f (y)) = dX (x; y) for all x; y 2 X.
Prove that an isometric embedding is always injective.

Solution 20 Let f (x) = f (y). Then, 0 = dY (f (x) ; f (y)) = dX (x; y) =
0 =) x = y.

1.1 Balls and Spheres

In a metric space (X; d), we have the following

De�nition 21 Given a point x0 2 X and a real number r > 0, we de�ne three
types of sets:

1. Nr (x0) = B(x0; r) = fx 2 X jd(x; x0) < rg (Open ball)

2. Nr (x0) = B (x0; r) = fx 2 X jd (x; x0) � rg (Closed ball)

3. S(x0; r) = fx 2 X jd(x; x0) = rg (Sphere)

Intuitively, it is clear that in all three cases, x0 is the centre and r the radius.
Mathematically, the open ball of radius r is the set of all points in X whose
distance from the centre of the ball is than r.
The open ball with an �-radius is called an open neighborhood. We can

have this when we replace r with � in an open ball. Thus, N� (x0) is an �-
neighbourhood of x0 where � > 0. This � can be arbitrary (but positive!).
Trivially, every neighbourhood of x0 contains x0 so that N� (x0) 6= ;.

De�nition 22 Let (X; d) be a metric space and U � X . x 2 X is said to be
an interior point of U if there exists � > 0 such that N� (x) � U . U is said
to be open if it contains an open neighborhood about each of its points. That
is, 8x 2 U , there exists � > 0 such that N� (x) � U . That is, every point is
an interior point. K � X is said to be closed if Kc = X �K = XnK (same
notation) is open.

With this in hand, let us see a very strange topology.

Problem 23 Let p 2 Z be a prime number, let x 2 Q and write x = a
b p
c

where a; b; c 2 Z are integers and a and b are relatively prime integers. De�ne
jxjp = p�c and dp : Q�Q �! R by dp (x; y) = jx� yjp. dp is called the p-adic
metric on Q.
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1. Show that dp satis�es the strong triangle inequality, namely that dp (x; y) �
max fdp (x; z) ; dp (z; y)g

2. Show that dp is a metric (this metric is called the p-adic metric)

3. Show that all triangles in (Q; dp) are isosceles. That is, if x; y; z 2 Q then
at least one of the equalities dp (x; z) = dp (x; y), dp (y; z) = dp (x; y) or
dp (x; z) = dp (y; z) is satis�ed.

4. Let x 2 Q, r > 0 a real number, let Nr (x) be the r-neighborhood around x.
We have seen that r-neighborhoods are always open in any metric space.
Show that if C = (Nr (x))

c then C is also open. In other words, open balls
are also closed.

Solution 24 1. Let x; y; z 2 Q. Without loss of generality, assume that
jx� zjp � jz � yjp. Since x; y; z are rational numbers and their di¤erence is
another rational number, we can write x � z = a

b p
c and z � y = a0

b0 p
c0 such

that gcd (a; b) = gcd (a0; b0) = 1. Then, jx� zjp = p�c and jz � yjp = p�c
0
. By

choice of x; y; z, we must have p�c � p�c0 =) pc
0 � pc =) c0 � c. Now,

d (x; y) = jx� yjp = jx� z + z � yjp =
���ab pc � a0

b0 p
c0
���
p
=
���pc0 �ab pc�c0 � a0

b0

����
p
.

We can write a
b p
c�c0 � a0

b0 , a rational number, as
ab0pc�c

0
�a0b

bb0 . By de�nition of
a; b and a0; b0, both are relatively prime to p. Hence bb0 is relatively prime to
p. Similarly, ab0pc�c

0 � a0b is relatively prime to p, provided that c0 � c, which

we have. Thus, jx� yjp =
���pc0 �ab pc�c0 � a0

b0

����
p
= p�c

0 � max
n
p�c

0
; p�c

o
=

max
n
jx� zjp ; jz � yjp

o
. 2. We need to de�ne j0jp = 0. Also, p�c 2 R+.

Hence dp (x; y) � 0 and M1 is satis�ed. For M2, Let dp (x; y) = 0. But
this means that jx� yjp = p�c = 0. This is where the de�nition j0jp = 0
comes in and hence x = y. Conversely, if x = y, then x and y share the
same factorization a

b p
c and hence jx� yjp = 0. For M3, let x = a

b p
c and

y = a0

b0 p
c0 such that c0 � c. Then, x � y = pc

0 ab0pc�c
0
�a0b

bb0 so that jx� yjp =
pc

0
. Furthermore, y � x = pc

0 a0b�ab0pc�c
0

bb0 so that jy � xjp = pc
0
and hence

jx� yjp = jy � xjp. Finally, for M4, let d (x; z) = p�c
0
and d (z; y) = p�c.

Since max
n
p�c

0
; p�c

o
� p�c

0
+p�c, it follows that jx� z + z � yjp = jx� yjp =

dp (x; y) � max
n
jx� zjp ; jz � yjp

o
� jx� zjp + jz � yjp = dp (x; z) + dp (z; y).

3. Let x; y; z 2 Q. Assume that dp (x; y) 6= dp (y; z). We may assume that
dp (x; y) = jx� yjp < jy � zjp = dp (y; z). Then,

dp (x; z) = jx� zjp � max
n
jx� yjp ; jy � zjp

o
= jy � zjp = dp (y; z) (4)

Also, from the assumption, jx� yjp < jy � zjp � max
n
jx� zjp ; jx� yjp

o
by

Strong Triangle Inequality and max
n
jx� zjp ; jx� yjp

o
= jx� zjp . Thus, we

11



must have
dp (y; z) = jy � zjp � jx� zjp = dp (x; z) (5)

Then, (4) and (5) together imply that dp (y; z) = dp (x; z). Thus for any three
points, there will always be one side not equal to both of the other such that
the other two will be equal. In other words, the points x; y; z de�ne an isosceles
triangle. 4. Let r > 0 be a real number and x 2 Q. Then, from the open set
Nr (x), consider z 2 C = (Nr (x))

c . Consider the neighborhood Nr=2 (z) and

let y 2 Nr=2 (z). For any points x; y; z, we know that either dp (x; z) = dp (x; y),
dp (y; z) = dp (x; y) or dp (x; z) = dp (y; z) from Part (3). If dp (y; z) = dp (x; y),
then dp (x; y) < r=2 so that dp (x; z) � dp (x; y) + dp (y; z) < r=2 + r=2 = r so
that z 62 C, a contradiction. If dp (x; z) = dp (y; z), then dp (x; z) < r=2 so that
z 62 C, again a contradiction. Thus, it can only be that dp (x; z) = dp (x; y),
then dp (x; y) � r so that y 62 Nr (x). That is, y 2 C so that Nr=2 (z) � C.
Thus, there exists a neighborhood of z such that z 2 Nr=2 (z) � C. Since z was
arbitrary, C is open.

Problem 25 It is easy to prove that every open subset of R (with the standard
topology) is the union of disjoint open intervals. The following problem shows
that the analogue for closed sets is far from true. Let K be the set of real numbers
x of the form

x =

1X
i=1

ai
3

where ai is either 0 or 2. In other words numbers with no 1�s in their base 3
expansion. This set is called the middle third Cantor set

1. Show that K � [0; 1]

2. Let s and k be positive integers. Show that K \
�
3s+1
3k

; 3s+2
3k

�
= ;

3. Show that K is closed (Hint: show that K is the complement in [0; 1] of
all the intervals from part 2)

4. Show that K contains no closed interval. In particular, this shows that K
is not the union of closed intervals.

Solution 26 1. Clearly, for ai = 0 for all i, then 0:a1a2::: = 0 and hence
0 2 K. Next, the expression 0:222::: in base 3 is 1. It may be concluded that
K = [0; 1]. However, since ai 6= 1 for all i, many points in the closed interval
are eliminated. Hence K � [0; 1]. 2 For integers s; k such that 3s + 1 > 3k,
then K \

�
3s+1
3k

; 3s+2
3k

�
= ; since K � [0; 1]. However, since 3s+1

3k
> 0, we

must have
�
3s+1
3k

; 3s+2
3k

�
� [0; 1] for integers s; k. Let x = 0:a1a2::: be a base 3

expression for some x 2 K \
�
3s+1
3k

; 3s+2
3k

�
. That is, let x = a1

1
3 + a2

1
32 + :::.

where ak = 0 or 2 but not 1. However, x 2
�
3s+1
3k

; 3s+2
3k

�
implies ak = 1 with

31�ks = a1
1
3 +a2

1
32 + :::ak�1

1
3k�1

, a contradiction to the fact that x 2 K. Hence
there is no such x 2 K \

�
3s+1
3k

; 3s+2
3k

�
. Since x was arbitrary, it follows that

12



K \
�
3s+1
3k

; 3s+2
3k

�
= ;. 3. Let s; k be such that

�
3s+1
3k

; 3s+2
3k

�
� [0; 1]. By (2),

K\
�
3s+1
3k

; 3s+2
3k

�
= ; =) [0; 1] nK =

[
s;k

�
3s+1
3k

; 3s+2
3k

�
. That is, the complement

of K is open, since it is the union of arbitrary open sets. Hence K is closed.
4. Let [a; b] � [0; 1], with 0 < a < b < 1, be an arbitrary interval with base-3
expression a = 0:a1a2::: and b = 0:b1b2:::. (that is, with ai; bi 2 f0; 1; 2g). If
any ai (or bi)= 1, then a 62 K (or b 62 K). Since a 6= b, we can have let k be
the smallest index such that ak 6= bk. Then, if ak = 0 or 2 implies b = 1, a
contradiction. If bk = 0 or 2, then ak = 1, another contradiction. Therefore,
the interval [a; b] is not in K.

Theorem 27 Let (X; d) be a metric space. Then, the following hold:

1. ;; X are open.

2. The union of an arbitrary number of open sets is open.

3. The intersection of �nitely many open sets is open.

4. N� (x) is open

Proof. 1. Vacuously, every point of ; is an interior point. Hence, it is open.
Second, a ball of any radius, when and if constructed around any point of X
will naturally be contained in X. Hence, X is open, too. For 2, let A be an
indexing set and suppose that U� is open for each � 2 A and x 2

[
�2A

U�. Then,

there exists � such that x 2 U�. Then, since U� is open, there exists � > 0 such
that N� (x) � U� �

[
�2A

U� and hence
[
�2A

U� is open. Moving on to 3, let Ui for

i 2 f1; :::; ng = In be open. If
\
i2I
Ui = ;, then we are done. Assume otherwise.

Then, there exists x 2
\
i2I
Ui. That is, x 2 Ui for each i. By de�nition of open

sets, there exists N�i (x) such that N�i (x) � Ui: Set � = min
i
�i. This exists since

i is �nite. Furthermore, since �i > 0 for all i, then � > 0 and � < �i for all i.
Hence neighborhood N� (x) � N�i (x) � Ui for each i. That is, N� (x) �

\
i2I
Ui.

Since x was arbitrary, we are done. This cannot be extended inde�nitely since
min (r1; r2; :::) may be zero, giving us a singleton as the intersection, or even
the empty set. As an example, consider the interval

�
� 1
n ;

1
n

�
= An. Then,T

n
An = f0g. 4, let x 2 N� (x). Then, clearly, N�=2 (x) � N� (x).

2 Introduction to Topological Spaces

The �rst three properties of Theorem 27 are generalised to what�s called a
topology.
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De�nition 28 Let X be a non-empty set and let � � 2X . Then, (X; �) is called
a topological space if

1. ;; X 2 �

2. The union of an arbitrary number of elements of � is in � .

3. The intersection of �nitely many members of � is in � .

In this case, � is said to be a topology on X.
Since members of � are sets, we will take the liberty of calling such sets open.

Thus, a set U will be called closed if its complement is open.

Example 29 Let X be a countable set. De�ne � = fA : jAcj <1g[f;g. Then,
� is a topology. The proof is easy: by assumption, ; 2 � . Since jXcj = 0, X 2 � .
Let U� 2 � for � in some indexing set A. Then, since the arbitrary intersection

of �nite sets is �nite, we must have
[
�2A

U� =

 \
�2A

U�

!c
2 � . Finally, for a

�nite indexing set I, and Ui 2 � for i 2 I;
\
i2I
Ui =

 [
i2I
Ui

!c
2 � because the

�nite union of �nite sets is �nite. This topology is called the co�nite topology.

Example 30 In view of the Theorem 27, all metric spaces are topological
spaces. A topological space which has an underlying metric will be called a
metric topology.

Example 31 � = f;; Xg is the simplest example. This is called the indiscrete
topology.

Example 32 On the other end of the spectrum of � = f;; Xg, the collection�
X; 2X

�
is also a topology, the proof of which is easy and will be skipped. This

is called the discrete topology.

The discrete topology is a metric topology and comes from the discrete
metric. To see this, we �rst note that for any x 2 X, fxg is open because
d (x; x) = 0 and the neighborhood N1=2 (x) � fxg. Next, let A be any subset of
X and let � 2 (0; 1). Then, 8x 2 A, the �-neighborhood N� (x) = fxg � A for
all � 2 (0; 1). Hence A is open.

Problem 33 List all topologies on the set fa; bg

Solution 34 First, f;; fa; bgg. Second, f;; fag ; fa; bgg. Third, f;; fbg ; fa; bgg
and fourth f;; fag ; fbg ; fa; bgg.

Problem 35 Let X be an uncountable set and � =
�
U 2 2X : U c is countable

	
[

f;g. Then, � is a topology. What can be said about � if X is countable?
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Solution 36 By de�nition, ; 2 � . Since XnX = ; is countable, hence X 2
� . Next, let U� 2 � for some � 2 A where A is an arbitrary indexing set.

Then, XnU� = U c� is countable and so, Xn
[
�2A

U� = X \
 [
�2A

U�

!c
= X \ \

�2A
U c�

!
=

\
�2A

X \ U c� =
\
�2A

(XnU�). Assuming the Axiom of Choice,

since arbitrary intersection of countable sets is countable, we therefore have\
�2A

(XnU�) = Xn
[
�2A

U� countable and thus
[
�2A

U� 2 � . Finally, let I be

a �nite indexing set and let Ui 2 � for each i. If Ui is empty for some i,
then

\
i2I
Ui = ; and since ; 2 � by de�nition, we have

\
i2I
Ui 2 � . Simi-

lar reasoning holds if
\
i2I
Ui = ; but if Ui 6= ; for each i 2 I. Assume that\

i2I
Ui 6= ;. Then since �nite union of countable sets is countable, it follows that

Xn
 \
i2I
Ui

!
= X \

 \
i2I
Ui

!c
= X \

 [
i2I
U ci

!
=
[
i2I
(X \ U ci ) (by distribution

of intersection over unions) is countable since each X \U ci = XnUi is countable
and thus

\
i2I
Ui 2 � .

If X is countable, then every subset U of X is countable and, therefore, XnU
is also countable. Hence the topology on X is the discrete topology.

Such a topology is called the co-countable topology.
As an aside, we prove that �nite union of countable sets is countable

Proof. Let A1; A2; :::; An be countable sets. Assume that they are disjoint

for otherwise we can Construct A01; A
0
2; :::; A

0
n such that

n\
i=1

Ai = ; by let-

ting A01 = A1 �
n�1 timesz }| {

f1g � :::� f1g = f(a; 1; 1; :::; 1) : a 2 A1g ; A02 = f2g � A2 �
n�2 timesz }| {

f2g � :::� f2g = f(2; a; 2; :::; 2) : a 2 A2g, ..., A
0

n =

n�1 timesz }| {
fng � :::� fng � An =

f(n; n; :::; n; a) : a 2 Ang. Now, since each Ai is countable, we can have Ai =n
a
(i)
1 ; a

(i)
2 ; :::

o
. Then, de�ne f :

n[
i=1

Ai �! N as follows: f (x) = nk + i if

x = a
(i)
k . f is well-de�ned since if x = y, then x; y 2 Ai. Then, a(i)k = a

(i)
j =)

k = j =) nk + i = nj + i =) f
�
a
(i)
k

�
= f

�
a
(i)
j

�
. Reversing these implica-

tions shows us that f is injective. Clearly, for every m 2 N and any �xed n, by
Euclidean algorithm, there exists unique k and i such that m = nk + i. Thus,

f is surjective and that
p[
i=1

Ai is countable.
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Problem 37 Let (X; �) be a topological space and let Y = X[fag where a 62 X.
Let � 0 = fV [ fag : V 2 �g [ f;g. Show that (Y; � 0) is a topological space

Solution 38 T1 By de�nition, ; 2 � 0. Also, since X 2 � , we must have
X [ fag = Y 2 � 0. For T2, let U� 2 � 0 for some index � in an indexing set
A. Then, 8�, 9V� 2 � such that V� [ fag = U�. Since � is a topology, we must

have
[
�2A

V� 2 � . Hence

 [
�2A

V�

!
[ fag =

[
�2A

(V� [ fag) =
[
�2A

U� 2 � 0, by

de�nition of � 0. T3, Similarly, if Ui 2 � 0 for index i in �nite indexing set I,
then, 8i, 9Vi 2 � such that Vi [ fag = Ui. Since � is a topology, we must have\
i2I
Vi 2 � . Hence

 \
i2I
Vi

!
[ fag =

\
i2I
(Vi [ fag) =

\
i2I
Ui 2 � 0. Hence � 0 is a

topology on Y:

We are now lead to our �rst theorem.

Theorem 39 Let (X; �) be a metric topology with jXj > 1. Then, 8x 2 X,
fxgc is open. That is, every singleton is closed.

Proof. Let d be the underlying metric on � . For any y 2 fxgc, de�ne
� = d (x; y). Since x 6= y, we must have � > 0. Let z 2 N�=2 (y) =
fz : d (z; y) < �=2g. Then, d (z; y) < �=2 < � = d (x; y). If z = x, then
d (z; x) = 0 and � < 0, a contradiction. Hence z 6= x and z 2 fxgc.

Corollary 40 Let jXj > 1. Then, the indiscrete topology (X; � I) is not a
metric topology.

Proof. Let y 2 X. Then, fygc � X, a proper subset of X and thus not open,
since the only open subsets of X are improper. Hence fygc is not open. In other
words, no singleton is closed, since y was arbitrary. Therefore, (X; � I) is not a
metric topology.
There is a high-brow sounding name for a topology on X on which every

singleton is closed and its called a T1-space. Thus, we could say that all metric
topologies are T1 and that the indiscrete topology is not T1. If jXj = 1, then
for y 2 X, fygc = ; is open and hence the above theorems fail to hold. The
only metric we can have on a singleton is the silly metric d (x; y) = 0 for all
x; y 2 fxg = X, which we won�t worry about much.

Problem 41 Let (X; �) be a topological space. Show that (X; �) is T1 if and
only if every �nite set is closed.

Solution 42 By de�nition, (X; �) is T1 if and only if every singleton fxg is
closed for x 2 X. If jXj = 1, then the result is trivial. Assume that jXj > 1 and
let X be T1 and A be a �nite set. If jAj < 1, then A = ; and there�s nothing
left to prove. If jAj = 1, then XnA is open, by de�nition of T1 and therefore A
is closed. Assume jAj = n for n � 1. Then, we can label points as fx1; :::; xng.
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From A =
n[
i=1

fxig, we can have Ac =
n\
i=1

fxigc by De Morgan�s Law. Since

fxig is closed for each i, we must have fxigc open. Since �nite intersection
of open sets in a topology is open, we must have Ac open. In other words, A
must be closed. Conversely, let A be a �nite and closed set. Again, if jAj < 1,
then A = ; and there�s nothing left to prove. If jAj = 1, then every singleton is
closed and X is T1. Assume jAj > 1. Let x; y 2 A with x 6= y and let U = fygc.
Then, x 2 U so that U is non-empty. Since every �nite set is closed, fyg must
be closed. It follows that X is T1.

In order to prove that the co�nite topology is not a metric topology, we will
need a little more machinery.

De�nition 43 Let (X; �) be a topological space. Then, (X; �) is said to be a
Hausdor¤ space (equivalently, � is Hausdor¤ ) if 8x; y 2 X and x 6= y, there
exists U; V 2 � such that x 2 U , y 2 V and U \ V = ;.

Problem 44 Every Hausdor¤ space is a T1 space

Solution 45 Let x; y be distinct points in a Hausdor¤ space (X; �). Consider
x 2 Xn fyg. Then, there exists U; V such that x 2 U , y 2 V such that U\V = ;.
Clearly, x 2 U � Xn fyg. This shows that Xn fyg is open, or that fyg is closed.
Since y (and x) was (were) arbitrary, therefore X is T1.

Theorem 46 Let (X; �) be a metric topology with jXj > 1 and let d be a metric
on X. Then, � is Hausdor¤

Proof. Let x; y be distinct points in X. Then, d (x; y) > 0. Let � = d (x; y).
Then, the sets U = N�=2 (x) and N�=2 (y) are disjoint for otherwise, let z 2 U \
V , then d (z; x) < �=2 and d (z; y) < �=2. Then, d (x; y) � d (x; z)+d (y; z) =)
� < �=2 + �=2, a contradiction. Needless to say, x 2 U and y 2 V .

Theorem 47 Let X be a non-empty, �nite set. Then, the co�nite topology
(X; �) is the same as the discrete topology.

Proof. Since X is �nite, every subset of X is �nite and so, the complement of
every subset of X is �nite. Thus, 2X =

�
A 2 2X : Ac is �nite

	
= � .

Theorem 48 Let (X; �) be the co�nite topology. If jXj =1, then the co�nite
topology is not a Hausdor¤ Space.

Proof. Let x; y 2 X be two distinct points and assume that there exist two
open sets U; V such that U \ V = ;. Then, U c [ V c = X. However, since U c

and V c are �nite, their union cannot possibly equal to an in�nite set. Thus, no
two open sets are disjoint, implying that (X; �) is not Hausdor¤.

Corollary 49 Co�nite topology is not a metric topology for jXj =1.

Proof. Since Co�nite topology is not Hausdor¤, and by Theorem 46, the
co�nite topology is not a metric topology.
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2.1 Construction of Topologies

Let (X; �1) and (X; �2) be two topologies. Then, clearly, �1\�2 is also a topology
on X. This is how new topologies on X can be formed. However, the union of
two topologies, in general, is not a topology. For example, if X = fa; b; cg and
�1 = fX; ;; fagg and �2 = fX; ;; fbgg, then �1 [ �2 = fX; ;; fag ; fbgg does not
form a topology on X as fa; bg = fag [ fbg is not open in �1 [ �2.
From set-theoretic properties, it is known that �1\�2 � �1 and that �1\�2 �

�2. The intersection of two topologies thus results in a �smaller�topology. Since
a topology on a set X is just a collection, and we can compare collections by
using the relation �, it makes sense to talk about comparison of topologies.
Let X be a non-empty set and let �1 and �2 be two topologies on X. Then,

�1 is said to be �ner or stronger than �2 if �2 � �1. Equivalently, �2 is said
to be weaker or coarser than �1, which is psychologically more appealing! If a
topology is weaker, then it has less open sets, by de�nition of set-containment.
Any given topology on X is always stronger than the indiscrete topology but
weaker than the discrete topology. In other words, the indiscrete topology is
always coarser than any other topology (on the same universal set). On the
other end of the spectrum, every subset of X is open in the discrete topology
so that the discrete topology is the �nest topology a set can have.
If we are interested in certain open sets, can we get to the smallest topology

in which our sets of interest are open? To be precise, let A � 2X contain sets
of our interest. What is the smallest topology on X which contains A? To the
point of annoying precision, what is the smallest set � such that A � � and �
is a topology on X? One very predictable way is to use the intersection of all
topologies which contain A. This is called the topology generated by A and is
denoted by � (A).

Theorem 50 � (A) is the smallest topology on X containing A

Proof. Let I be an arbitrary indexing set and let � i � 2X be a topology
on X such that for each i 2 I such that A � � i for each i. Let � (A) =\
i2I
� i. � (A) is non-empty since, by de�nition, A � � i for each i and so that

A � � (A). Since ;; X 2 � i for each i, then ;; X 2 � (A). Let U be sets
in � (A) for index  2 � where � is an indexing set. Then, U 2 � i for each

i =)
[
2�i

U 2 � i for some indexing set �i for each i =)
\
i2I

[
2�i

U 2\
i2I
� i =)

[
2�

U 2 � (A). Similarly, the �nite intersection of elements of

� (A) is in � (A). To see that it is the smallest one containing A, let A =�
%A � 2X : A � %A and %A is a topology on X

	
and let % 2 A such that % �

� (A). By de�nition, � (A) =
\

%A2A
%A � %. Thus, % = � (A).

However, a more practical construction is done by using what�s called a
subbasis. Before giving its de�nition, we motivate its construction: let B be the
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collection of all �nite intersection of elements of A. This is non-empty since A
is non-empty. Let A� be the collection of all unions of elements in B, including
;.

Theorem 51 8A � 2X , A� = � (A)

Proof. We need to show that A� is a topology. From de�nitions of A and B,
we have A � B since single-intersections can produce elements of A itself. Fur-
thermore, single-unions of B can produce B itself so that we have the inclusions
A � B � A�. Thus, A� is non-empty since A is non-empty. By de�nition,
; 2 A�. By convention, the empty intersection is de�ned to be X so that
X 2 A�.
Next, let Ui 2 A� where i 2 I for an arbitrary indexing set I. Then, for each

i, Ui is a union of elements in B. Let Ui =
[
�

Ui;� where � is some index. Now,

[
i

Ui =
[
i

0@[
�

Ui;�

1A. Since elements of A� are all unions of elements of B and

elements of B are �nite intersections of elements of A, it follows that
[
i

Ui is a

union of �nite intersections of elements of A. Hence T2 holds. Let U; V 2 A�.
Then, U =

[
�2A

U� and V =
[
�2B

V� where U� and V� are results of �nite

intersections of elements of A for each � and �. Then, U \V =
[

�2A;�2B
U�\V� .

U� \ V� is �nite since each is a �nite intersection =) U \ V 2 A�. We can
then use induction to show that the same holds for �nite intersections. Hence
T3 is satis�ed, so that A� forms a topology.
Thus, � (A) � A�. To show the converse, we know that A � � (A) =) B �

� (A) since B is simply formed by taking �nite intersections of elements of A
and � (A) is a topology. Finally, A� � � (A) since, again, A� is a collection of
unions of elements of B including ; and � (A) is a topology.

De�nition 52 Let (X; �) be a topological space. If (X; �) is a topological space
and A � 2X such that A� = � , then A is called subbasis for � . A collection
(sub-basis?) B � 2X is a basis for � if
B1. 8x 2 X, 9U 2 B such that x 2 U
B2. If U; V 2 B and x 2 U \ V , then 9W 2 B such that x 2W � U \ V

Every basis is a subbasis since �nite intersections of elements of B are in B
and unions of �nite intersections of elements of B generate the same topology
as the topology generated by B:

Lemma 53 Let B be a basis of topology � . If U is an open set, then U =
[
�2A

U�,

where U� 2 B for some indexing set A.
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Proof. Let U be an open subset of X and x 2 U � X. By B1, 9Ux such that
x 2 Ux. Clearly, Ux � U so that

[
x2U

U = U �
[
x2U

Ux. Conversely, let x 2 U .

Then, clearly, x 2
[
x2U

Ux

Since unions of �nite intersections of elements of B form � and for a �xed x,
Ux alone may be considered as as a �nite intersection of itself with itself, then[
x2Ux

Ux = Ux is an open set.

Example 54 Let (X; d) be a metric space with topology � . Then,

B = fN� (x) : x 2 X and � > 0g

is a basis since 8x 2 X, we have x 2 N� (x). Also, if x 2 N�1 (a)\N�2 (b), then
d (x; a) < �1 and d (x; b) < �2. Now let � = min f�1 � d (x; a) ; �2 � d (x; b)g.
Then, for y 2 N� (x), d (y; a) � d (y; x) + d (x; a) < �+ d (x; a) < �1 � d (x; a) +
d (x; a) = �1 so that y 2 N�1 (a). Similarly, d (y; b) � d (y; x) + d (x; b) <
� + d (x; b) < �2 � d (x; b) + d (x; b) = �2 so that y 2 N�1 (a) \N�2 (b). That is,
N� (x) � N�1 (a) \ N�2 (b) and hence 9N� (x) such that x 2 N� (x) � N�1 (a) \
N�2 (b)

Example 55 Let X = R with standard topology. Then,

B =
�
N� (x) : x 2 Q and � 2 Q+

	
is a basis. Let r 2 R. If r is positive, then by Archimedes axiom, there exists
n such that r < 1n = n. Clearly, for positive r, �n < r so that jrj < n. If
r is negative, then there exists an m such that �r < 1m =) �m < r, and,
of course, r < m since r is negative so that jrj < m. In either case, jrj is
less than an integer (rational number). If r = 0, then jrj < 1 and in this case,
interval N� (0) is our required element of basis for any � 2 Q+. Hence for all
r 2 R, there exists rationals a; b such that a < r < b. From this, we have that
0 < r�a

2 < b�a
2 ,

r�b
2 < 0. Let x = a+b

2 and � = b� a. Then, r 2 N� (x) because

d (r; x) = jr � xj =
����r � a+ b

2

���� = ����r � a2 +
r � b
2

����
�

����r � a2
����+ ����r � b2

���� = r � a
2

+
b� r
2

<
b� a
2

+
b� r
2

<
b� a
2

+
b� a
2

= b� a = �

This construction satis�es B1. Now let N�1 (x1) and N�2 (x2) be two elements
of B and x 2 N�1 (x1) \N�2 (x2). For � = min f�1 � d (x; x1) ; �2 � d (x; x2)g so
that for y 2 N� (x), d (y; x1) � d (y; x)+d (x; x1) < �+d (x; x1) < �1�d (x; x1)+
d (x; x1) = �1 so that y 2 N�1 (x1). Similarly, d (y; x2) � d (y; x) + d (x; x2) <
� + d (x; x2) < �2 � d (x; x2) + d (x; x2) = �2 so that y 2 N�1 (x1) \ N�2 (x2).
That is, N� (x) � N�1 (x1) \N�2 (x2) and hence 9N� (x) such that x 2 N� (x) �
N�1 (x1) \N�2 (x2)
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Example 56 In discrete topology, B = ffxg : x 2 Xg [ f;g. By de�nition,
8x 2 X, fxg 2 B so that 9U 2 B such that x 2 U . If U = fxg = V = fyg,
then the condition is trivially satis�ed. For x 6= y, then W = ; so that B2 is
satis�ed.

Lemma 57 Let B be a basis for topology � . If U =
n\
i=1

Ui where Ui 2 B, then

U =
[
�2A

U�, where U� 2 B for some indexing set A.

Proof. By B2, Ui 2 B =) U 2 B. Thus, U is an open set and the Lemma
53 may be applied.

Theorem 58 (Criteria for basis-ness) Let (X; �) be a topological space and
C � � be a collection of open sets such that 8 open sets U and 8x 2 U , 9V 2 C
such that x 2 V � U . Then, C is a basis for � .

Proof. For B1, let x 2 X. Since X is open, 9U 2 C such that x 2 U � X. For
B2, let U1, U2 2 C and x 2 U1 \ U2. Then, U1 \ U2 is open =) 9U3 such that
x 2 U3 � U1 \ U2 =) C is a basis. To show that C is a basis for � , let C� be
the topology generated by C. If U is an open set, x 2 U , then 9Ux 2 C such
that x 2 Ux � U and U =

[
x2U

Ux by Lemma 53, so U 2 C� so that � � C�. If

U 2 C�, then U =
[
�2A

U� where U� 2 C by de�nition of topology generated by

C. Since C � � , we must have U 2 � , we must have C� � � .
Thus, B is a basis for � if for every open set U , U =

[
�2A

U� where U� 2 B.

Following allows us to compare topologies by comparing their bases:

Theorem 59 Let X be a non-empty set and let (X; �) and (X; � 0) be two topolo-
gies on X, B be basis for topology � and B0 be basis for topology � 0. Then, the
following are equivalent

1. � 0 is �ner than �

2. 8x 2 X, 8U 2 B with x 2 U , 9U 0 2 B0 such that x 2 U 0 � U

Proof. (1 =) 2)
Suppose � 0 is �ner than � . Let x 2 X and x 2 U 2 B be an open set in � .

Then, U is open in � 0 and so U =
[
�2A

U� where U� 2 B0. Since x 2 U , there

exists � 2 A such that x 2 U� =) U� � U .
(2 =) 1)
Let U be an open set in � . To show that U is an open set in � 0, write

U =
[
�2A

U� where U� 2 B. 8x 2 U , there exists � such that x 2 U� � U =)
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9U 0� 2 B0 such that x 2 U 0� � U�. Then, U �
[
�2A

U 0� �
[
�2A

U� = U . Thus,

U =
[
�2A

U 0� =) U is open in � 0.

Example 60 l1 metric and l2 metric are equivalent, which we will prove using
Theorem 59. l2 is �ner than l1 since for any basis element of l1, say N l1

� (0), we
always have N l2

�p
2

(0) � N l1

� (0). Conversely, l
1 is �ner than l2 since N l1

� (0) �

N l2

� (0) by default.

More generally, we have the following:

Problem 61 Let p > 0 and de�ne dp : Rn � Rn �! Rn by

dp ((x1; :::; xn) ; (y1; :::; yn)) = (jx1 � y1jp + :::+ jxn � ynjp)
1=p

Show that if p; p0 � 1, then the lp and lp0 metrics induce the same topology.
Solution 62 Let x 2 Rn. Then, for � > 0, de�ne N�;p (x) = fy : dp (x;y) < �g
for some p � 1. To show that the collection C = fN�;p (x) : x 2 Rng form a basis
for the topological space generated by dp (x;y), we will use the fact that for each
open set U of Rn and each x 2 U , there is an element N�;p (x) of C such that x 2
N�;p (x) � U . This can be satis�ed by choosing � = 1

2 sup fd (x;y) : x;y 2 Ug.

If 1 � p0 � p < 1, then jxi � yijp
0
� jxi � yijp so that

nX
i=1

jxi � yijp
0
�

nX
i=1

jxi � yijp and hence dp (x;y) � dp0 (x;y). By this comparison, we note

that N�;p0 (x) � N�;p (x). Clearly, N �p
2
;p (x) � N�;p0 (x). It follows that the

topology generated by dp0 (x;y) is �ner than that for dp (x;y) and conversely.
Hence both topologies are the same. For the case of p = 1, it su¢ ces to com-
pare the basis for the topology generated by d1 (x;y) with d1 (x;y). Clearly,

max fjxi � yij : 1 � i � ng �
nX
i=1

jxi � yij and hence d1 (x;y) � d1 (x;y) so

that N�;1 (x) � N�;1 (x). Hence the topology generated by d1 (x;y) is coarser
than the topology generated by d1 (x;y). To see the converse, we note that
N�;1 (x) � Nn�;1 (x) and we are done.

Example 63 Consider the topologies on R with basis B = f(a; b) : a < bg for
the standard topology, B0 = f[a; b) : a < bg, the lower limit topology and B00 =
f(a; b)�K : a < bg [ B for the K-topology where K =

�
1
n : n 2 N

	
: Then, for

each x 2 (a; b) 2 B, we have x 2 [x; b) � (a; b) so that the standard topology
is coarser the lower limit topology. Also, for each x 2 (a; b), we have x 2
(a; b) �K � (a; b) if x 6= 1

n for any n and x 2 (a; b) � (a; b) otherwise. Thus,
the K-topology is also �ner than the standard topology. However, K-topology
and lower limit topology are not comparable.

From hereon, we will still be studying how topological spaces arise and de-
form but for that, we need a little more machinery.
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2.2 Closures and Interiors

Let (X; �) be a topological space and let A be a subset of X. Then, Int (A) is
the union of all open sets contained in A and A is the intersection of all closed
sets containing A. Thus, by de�nition, Int (A) � A � A. To be more precise,
let x 2 Int (A). Then, since Int (A) =

[
�2�

U� with U� � A for each � in an

indexing set �, we must have x 2
[
�2�

U� =) x 2 U� for some � in general

and in A in particular (since 8�;U� � A). Hence x 2 A so that Int (A) � A.
Furthermore, for x 2 A, A =

\
�2�

U� where U� is a closed set containing A for

each �, then x 2 A � U� for each � =) x 2 A.

Proposition 64 Let (X; �) be a topological space and let A be a subset of X.
Then, A is open if and only if A = Int (A).

Proof. ( =) ) Let A be the collection of open sets contained in A. Then, since
A � A, we have that A 2 A and Int (A) =

[
U2A

U = A.

((= ) Int (A) is open since it is a union of open sets. Since Int (A) = A,
therefore A is open.

Proposition 65 Let (X; �) be a topological space and let A be a subset of X.
Then, A is closed if and only if A = A.

Proof. ( =) ) Let A be the collection of closed sets containing A. Then, since
A � A, we have that A 2 A and A =

\
U2A

U = A.

((= ) First, we notice that A =
\
U2A

U = A () A
c
=
[
U2A

U c = Ac with

U c open. Next,
[
U2A

U c is open since it is the arbitrary union of open sets. Thus,

Ac is open or that A is closed.
In particular, this means that A is closed.

Proposition 66 Let (X; �) be a topological space and let A be a subset of X.
Then, x 2 A () every neighborhood of x intersects A

Proof. We prove the contrapositive: that, x 62 A () 9 neighborhood U of x
such that A \ U = ;.
( =) ) Let x 62 A. Then, x 2 U = X � A where U is some open set. Thus,

U is a neighborhood of x. Since A � A, A \ U = ; and A \ U � A \ U , it
follows that A \ U = ;.
((= ) Let x 2 X and assume that 9 neighborhood U of x such that A\U =

; =) A � X � U . Since U is open, we must have X � U closed so that
A � X � U , by de�nition of A so that if x 2 U , then x 62 A.
This can even be reduced to the basis.
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Proposition 67 Let (X; �) be a topological space and let A be a subset of X
and B be a basis for � . Then, x 2 A () every basis element containing x
intersects A

Proof. Again, the contrapositive �x 62 A () 9 neighborhood U of x such
that A \ U = ;�is proved:
( =) ) Let x 62 A. Then, x 2 U = X � A where U is some open set. Thus,

U is a neighborhood of x. Since U is open U =
[
�2A

U� where U� 2 B for each

� in an indexing set A. Let A0 be an indexing set such that x 2 U� for � 2 A0.
Since A � A, it follows that A \ U� = ; for for � 2 A0.
((= ) Let x 2 X and assume that 9U 2 B with x 2 U such that A \ U =

; =) A � X � U . Since U is a basis element, open, we must have X � U
closed so that A � X � U so that if x 2 U , then x 62 A.

Proposition 68 ; = ;, A [B = A [B and A = A

Proof. SinceX is open in any topology, thenXc = ; is closed. By Proposition
65, ; = ;

A � A and B � B implies A [B � A [B. Since A and B are both closed,
A[B is a closed set containing A[B = C, say. Thus, C � A[B by de�nition
or that A [B � A [ B. To show the converse, let x 2 A [ B. Then, x 2 A or
x 2 B. If x 2 A, then every neighborhood U of x intersects A and so intersects
A [ B. Thus, x 2 A [B. Similarly, if x 2 B, then every neighborhood U of x
intersects B and so intersects B [ A. Proposition 67, x 2 A [B. In either
case, A [B � A [B so that A [B = A [B. Finally, combining Proposition
65 and the fact that A is closed gives us A = A.

Theorem 69 Int (A) is the largest open set contained in A

Proof. Clearly, Int (A) � A by de�nition. To prove that this is the largest such
set, assume that there exists another open set O such that Int (A) � O � A.
Then, let x 2 M = O � Int (A) =) x is not an interior point of A. In
particular, it is not an interior point of O. Since x is arbitrary, therefore O is
not an open set, a contradiction. Hence x 62 M = O � Int (A) so that M = ;,
establishing the required theorem.

Proposition 70 Int (X) = X, Int (;) = ;, Int (A \B) = Int (A) \ Int (B)
and Int (Int (A)) = Int (A)

Proof. Clearly, Int (X) � X for any subset of the universal set X, in general,
and for Int (X) in particular. For reverse inclusion, let x 62 Int (X). Then,
x is not a member of any open set containing Int (X). In particular, since
X is also an open set containing Int (X), it follows that x 62 X. That is,
x 62 Int (X) =) x 62 X the contrapositive of which is x 2 X =) x 2 Int (X)
and hence X � Int (X). For the second part, the empty set is a subset of every
set. Thus, ; � I (;) holds for the particular set I (;). To show the converse, let
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x 2 I (;). Then, x 2
[
�2A

U� with U� � ; for each � and U� open. This is only

possible if U� = ; for each � so that ; =
[
�2A

U� and hence x 2 ; =
[
�2A

U�,

concluding that I (;) � ;. Third, let A;B 2 2X and let x 2 I (A \B) () x 2[
�2A

U� with U� open and U� � A\B for each �. Since A\B � A and A\B � B,

it follows that x 2
[
�2A

U� with U� open and U� � A \ B () U� � A and

U� � B. Thus, U� is an open set contained in A and B for all � () by
de�niton, means that x 2 I (A) and I (B) () x 2 I (A) \ I (B). Finally, for
any set A, I (A) � A. Hence I (I (A)) � I (A). To show the reverse inclusion, let
x 2 I (A). Since I (A) is an open set and, by de�nition of interior, I (I (A)) =[
2�

U with U � I (A) for each  where U is an open set and � is an indexing

set, it follows that there exists an open set U0 for some 0 2 �, a neighborhood
of x, such that x 2 U0 � I (A). Thus, x 2

[
2�

U = I (I (A)) and so that

I (A) � I (I (A)).

Problem 71 Let X be a non-empty set and let I : 2X �! 2X be an opera-
tor. Call A 2 2X I-open if I (A) = A. Show that if I (X) = X, I (A) � A,
I (A \B) = I (A) \ I (B) and I (I (A)) = I (A), then the colIection of I-open
sets forms a topology on X.

To prove this, we �rst prove that A � B =) I (A) � I (B): A = A\B =)
I (A) = I (A) \ I (B) � I (B).

Solution 72 Let � =
�
A 2 2X : I (A) = A

	
. Then, ; � I (;) for any set in

general and, conversely, I (;) � ;. Thus, ; 2 � . Let U1; U2 2 � . Then, I (U1) =
U1 and I (U2) = U2 so that U1 \ U2 = I (U1) \ I (U2) = I (U1 \ U2) by (c) and
hence U1 \ U2 2 � . Now let n 2 N and A0 = f1; 2; :::; n� 1g and Ui; Un 2 �

for i 2 A0. Then, Ui 2 � =) I

 
n\

i=A0

Ui

!
=

n\
i=A0

Ui and Un 2 � =)

I (Un) = Un. Hence
n\

i=A0

Ui \ Un = I

 
n\

i=A0

Ui

!
\ I (Un) = I

 
n\

i=A0

Ui \ Un

!

again by (c) so that
n+1\
i=A0

Ui 2 � . Now, in order to show that U� 2 � =)[
�=A

U� 2 � for an arbitrary indexing set, that is, for U� = I (U�), we must

have
[
�=A

U� = I

 [
�=A

U�

!
. We must �rst show that I (A [B) = A [ B.

Clearly, I (A [B) � A [ B by hypothesis. By assumption, A = I (A) and
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B = I (B). Hence, A � A[B and B � A[B =) I (A) = A � I (A [B) and
I (B) = B � I (A [B). Thus, A [B � I (A [B).

Now, I

 [
�=A

U�

!
�
[
�=A

U� by default. Conversely, given that U� = I (U�),

for each �, we have that U� �
[
�=A

U� =) I (U�) = U� � I

 [
�=A

U�

!
. Thus,

[
�=A

U� � I

 [
�=A

U�

!
.

Note that the assumption U = I (U) is crucial. For example, let U1 =
�
0; 12
�

and U2 =
�
1
2 ; 1
�
under the usual topology of R, then, I (U1 [ U2) = I ([0; 1]) =

(0; 1) but I (U1) [ I (U2) =
�
0; 12
�
[
�
1
2 ; 1
�
6= [0; 1].

Problem 73 Let (X; �) be a topological space and let fU�g�2A be a collection
of subsets. Such a collection is called locally �nite if for every x 2 X, there is
a neighborhood x 2 V such that jf� 2 A : V \ U� 6= ;gj < 1. In other words,
there is a neighborhood of everypoint that intersects only �nitely many sets in
the collection. Show that if fU�g�2A is a locally �nite collection of closed sets,
then

[
�2A

U� is a closed subset of X.

Proof. To show that
[
�2A

U� is closed, we will show that

 [
�2A

U�

!c
=
\
�2A

U c� is

open. Let x 2
\
�2A

U c�. Then, x 2 U c� � X for each �. Since fU�g�2A is locally

�nite, there exists an open set V such that x 2 V and V \ U� 6= ; for �nitely
many �. Let I = f� 2 A : V \ U� 6= ;g. Then, V \

\
�2A

U c� = V \
\
i2I
U ci =

\
i2I

V \U ci is open. Note that x 2 V \
\
i2I
U ci = U (say) so that U is a neighborhood

of x. Clearly, U �
\
i2I
U ci . Furthermore, U \

[
�2A

U� = ; since U � U ci for each

i 2 I so that x 2
\
�2A

U c�. Hence for each x 2
\
�2A

U c�, there exists U such that

x 2 U �
\
�2A

U c�. Thus,
[
�2A

U� is closed.

Problem 74 Let X be a space with topologies �1 and �2 such that �1 � �2. For
T � X, let Cl1 (T ) (resp. Cl2 (T )) denote the closure with respect to �1 (resp.
�2). Prove that Cl2 (T ) � Cl1 (T ). Formulate and prove a similar statement
for interiors.

Solution 75 If T = ;, then Cl1 (T ) = ; = T = Cl2 (T ) trivially. Thus, assume
that T 6= ;. Then, since T � Cl (T ) in general, we have that Cl1 (T ) 6= ; 6=
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Cl2 (T ). Now let A2 be the collection of closed sets (relative to containing �2)
containing T . Since �1 � �2, then for any closed set K in �1, Kc is open in
�1 =) Kc is open in �2 =) K is closed in �2. Thus, A1 � A2, where A1
is the collection of closed sets (relative to �1) containing T from which we have
Cl2 (T ) =

\
A2A2

A �
\

A2A1

A = Cl1 (T ).

The corresponding statement for interior operator is as follows: Let (X; �1)
and (X; �2) be two topologies on X. If �1 � �2 and U � X, then I1 (U) � I2 (U).
Proof: Again, assume that I1 (U) 6= ;, for otherwise the statement will be trivial.
Let U� 2 �1 be open sets contained in U and let U1 = fU� : U� is open in �1 and U� � Ug.
That is, I1 (U) =

[
U�2U1

U�. �1 � �2 implies that U� 2 �2 so that U1 � U2 =

fU� : U� is open in �2 and U� � Ug. Thus,
[

U�2U1

U� �
[

U�2U2

U�. That is,

I1 (B) � I2 (B) :

2.3 Kuratowski Axioms

Just as we can de�ne a topology using open sets, we can very well de�ne a
topology using closed sets. Such an approach was �rst propsed by Kazimierz
Kuratowski by an operation Cl : 2X �! 2X where X is any non-empty set,
satisfying the following:

1. Cl (;) = ;

2. A � Cl (A)

3. Cl (A [B) = Cl (A) [ Cl (B)

4. Cl (Cl (A)) = Cl (A)

Proposition 76 A � B =) Cl (A) � Cl (B)

Proof. Let A � B. B \A = A. Also, B = B \X = B \ (A [Ac) = (B \A) [
(B \Ac) = (B \Ac) [ A = (B �A) [ A. By 3, Cl (B) = Cl (B �A) [ Cl (A).
In particular, this means that Cl (A) � Cl (B).
These are exactly the properties the operatorA 7�! A satis�es. The operator

Cl is called the Kuratowski Closure operator. Kuratowski called a set closed if
Cl (A) = A. In this case, the collection � =

�
A 2 2X : Ac = Cl (Ac)

	
gives rise

to a topology on a non-empty set X.
Proof. Since Cl (;) = ;, thus ;c = X 2 � . By de�nition of universal set
Cl (X) � X. Converse holds by (2) above. Hence Cl (X) = X so that ; = Xc 2
� so that T1 holds.
For T2, let U� 2 � where � is an index in an arbitrary indexing set A.

Let B� = U c�. Then,
\
�2A

B� � Cl

 \
�2A

B�

!
. To show the reverse inclusion,
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note that 8 2 A,
\
�2A

B� � B and that Cl

 \
�2A

B�

!
� Cl (B) by Propo-

sition 76. From B = Cl (B), we have Cl

 \
�2A

B�

!
� B for each  so

that Cl

 \
�2A

B�

!
�
\
�2A

B�. That is, Cl

 \
�2A

B�

!
=
\
�2A

B� so that
\
�2A

B�

is closed. In other words,

 \
�2A

B�

!c
=

 \
�2A

U c�

!c
=

  [
�2A

U�

!c!c
=[

�2A
U� 2 � .

Finally, let Ui 2 � where i is in index in a �nite indexing set I. Let Ai = U ci .

Then, Ai is closed so that Cl (Ai) = Ai and also that Cl

 [
i2I
Ai

!
=
[
i2I
Cl (Ai)

by (3) above so that Cl

 [
i2I
Ai

!
=
[
i2I
Ai and hence

 [
i2I
Ai

!c
=
\
i2I
Aci =\

i2I
Ui 2 � so that T3 holds.

2.4 Limit Points

De�nition 77 Let (X; �) be a topological space and let A � X be non-empty.
A point x 2 X is said to be a limit point of A if every neighborhood U 3 x
intersects A in a point other than x.

In metric spaces, the de�nition takes the following form: x0 2 X of a set
A � X is a limit point if 8� > 0, N�(x0) contains points of A other than x0.
Notice that x0 need not be a member of A. The set of all limit points of a set
A is denoted by Ad. If a point is not a limit point, then it is called an isolated
point.

Theorem 78 A = A [Ad

Proof. Let x 2 Ad. Then, every neighborhood of x intersects A in a point other
than x. In particular, every neighborhood of x intersects A so x 2 A. That is,
Ad � A. Since A � A, we have that Ad [ A � A. To show the converse, let
x 2 A. Then, either x 2 A or x 62 A. If x 2 A, then x 2 A [ Ad and we are
done. If x 62 A, then since x 2 A, every neighborhood of x intersects A. Since
x 62 A, every neighborhood of x must intersect A at point(s) other than x, so
that x 2 Ad by de�nition of Ad. Hence x 2 A[Ad. In either case, Ad [A � A.

Corollary 79 Let (X; �) be a topological space and let A � X be non-empty.
Then, A is closed() Ad � A.
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Proof. A is closed() A = A () A = A [Ad () Ad � A

Problem 80 Let (X; �) be a T1 topological space and let A � X. Show that if
x 2 Ad () any neighborhood of x contains in�nitely many points of A.

Proof. Let x be a limit point of A. Then, by de�nition of limit point, every
neighborhood of x intersects A at points other than x. Let U be such a neighbor-
hood but assume that U contains �nitely many points. That is, U = fu1; :::; ung
with x = uk for some k 2 I = f1; 2; :::; ng, then U =

[
i2I
fuig. Since in a T1

space, every singleton is closed, it follows that fuig is closed for each i. De-
�ne V =

[
i2I, i 6=k

fuig. Since �nite union of closed sets is closed, thus V is

closed =) V c is open. Since x 62 V , we must have x 2 V c so that V is a
neighborhood of x. Also, by construction of V c, we have excluded points of U
which intersect with A. Thus, V c \ (An fxg) = ;, implying the contradiction
that there exists a nieghborhood of x which has an empty intersection with A at
points other than A and that x is not a limit point. Thus the assumption that
U is �nite must be wrong and every neighborhood U of x contains in�nitely
many points.
Conversely, let x 2 X and assume that every neighborhood of x which

intersects A at points other than x is in�nite. In particular, this means that
every neighborhood of x which intersects A at points other than x is non-empty.
This is exactly the de�nition of a limit point and hence x is a limit point of A.

Problem 81 Recall that the lower limit topology on R is the topology with basis
B = f[a; b) : a < bg. What is the closure of

�
0;
p
2
�
in the lower limit topology?

Solution 82 The neighborhoods of any element are of the form [a; b) ; [b;1)
or R = (�1;1). Let x 2 R. Then, R \

�
0;
p
2
�
n fxg 6= ;, so we can skip R.

Let [a; b) be a neighborhood of 0. Then, a � 0 < b and [a; b)\
�
0;
p
2
�
n f0g 6= ;.

If [b;1) is a neighborhood of 0, then [b;1)\
�
0;
p
2
�
n f0g. Hence 0 2

�
0;
p
2
�d
.

Next, we will show that no negative number is a limit point of
�
0;
p
2
�
. Let

� < 0. Consider the neighborhood [�; 0). [�; 0) \
�
0;
p
2
�
n f�g = ;. Hence no

negative number is a limit point of the set
�
0;
p
2
�
. Furthermore,

p
2 62

�
0;
p
2
�d

since the no element in the collection of neighborhoods
��p

2;
p
2 + p

�
: p 2 Q

	
of
p
2 intersects

�
0;
p
2
�
at any point, let alone

p
2. In particular, this also

means that all real numbers>
p
2 are also not limit points of

�
0;
p
2
�
. Hence�

0;
p
2
�d
= f0g and so Cl

��
0;
p
2
��
=
�
0;
p
2
�
.

De�nition 83 A subset M of a metric space X is said to be dense in X if
�M = X or X is said to be separable if it has a countable subset which is dense
in X.
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More technically, ifM is dense in X, then 8x0 2 X and 8� > 0, B(x0; �) will
contain points of M .
This de�nition essentially says that we can have limit points of A within

it and the result can equal to the parent set. One good example is the set
of rationals and the real set. We all know that the set of rationals is not
complete. In Analysis, real numbers can be constructed using Dedekind cuts
or the addition of limits to every Cauchy sequence. That is, �Q = R or that
the set of rationals are dense in the set of reals. The complex plane, too, can
be separated from the irrational real and imaginary parts against the rational
ones.

Exercise 84 The following conditions are equivalent:

1. M is dense in X

2. For every x 2 X, there exists a sequence in M which converges in X.

3. Every nonempty open subset of X contains an element of M .

Proposition 85 A discrete metric space (X; d) is separable if and only if X is
countable.

Proof. Let X = fx1; x2; :::; xng be a countable set and letM = fxi; :::; xjg be a
subset for 1 � i; j � n. Then, for d (xi; xj) < �, we have xi = xj if � is less than
1. Hence, any open ball B(xk; �) for 1 � k � n will contain only the element
xk and no point is a limit point. Hence, no proper subset of X can have a limit
point. Therefore, any M will not be dense in X. Since there are no limit points
in X, Xd = ;. We therefore have �X = X [Xd = X. Hence, X is dense in X
and, therefore, separable.
Conversely, assume that X is separable, that is, 9M � X such that �M = X

but Md is empty for the same reason as above. Therefore, �M = M [Md = X
implies M = X is the only possible subset. Since M (or X) does not have any
limit points, every point is an isolated point. Hence, the set is countable.
Simply put, no proper subset of separable X can have limit points if the

metric is discrete. It is surprising that we can have limit points in a speci�c
metric space whenever we can count the elements of that space, and conversely.

3 Sequences

3.1 Sequences in Topological Spaces

De�nition 86 Let (X; �) be a topological space. A sequence in X is a function
f : N �! X.

Denote f (i) = xi. Then, fxi : i 2 Ng is the range of the sequence, usually
called the sequence itself. This is shortened to fxig1i=1 to indicate range.
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De�nition 87 A sequence fxig1i=1 in a topological space (X; �) is said to con-
verge to a point x in X if for all neighborhoods U 3 x, 9N 2 N such that
xi 2 U for all i � N .

In such a case, x is called a limit of fxng1n=1 and fxng
1
n=1 is said to converge

to x. This is denoted by lim
n!1

xn = x or xn �! x as n �!1.
Notice the use of the quanti�er �a�.

Example 88 Let (X; �) be a topological space and let f (i) = a for some a 2 X.
Then, fxig1i=1 = fag, the constant sequence. In particular, xi ! a.

Limits are not necessarily unique. Consider

(X; �) = (fa; b; cg ; f;; X; fa; bg ; fb; cg ; fbgg)

Then, then for the sequence f (i) = b for all i, b! a, b! b and b! c.
Such an unfortunate situation does not arise in Hausdor¤ spaces

Proof. Let xi ! a; b with a 6= b. Then, 9U; V open such that a 2 U , b 2 V
and U \V = ;. But by convergence, 9N 2 N such that xi 2 U \V for all i � N ,
a contradiction.
In the discrete topology, only the sequences which eventually become con-

stant are convergent.
Proof. Let xi ! x with xi not eventually constant. Then, for the open set
fxg, there is no N such that xi 2 fxg when n � N .
In the indiscrete topology, every sequence converges to every point.

Theorem 89 If X be a non-empty set equipped with two topologies � ; � 0 with
� � � 0. If xi ! x in � 0, then xi ! x in � .

Proof. Let xi ! x in � 0 and let U be a neighborhood of x in � . Then, U 2 � 0
so that 9N 2 N such that xi 2 U for all i � N . Since U was arbitrary, therefore
xi ! x in � .
The converse doesn�t hold, though. This is because there are more open sets

one needs to verify the condition of convergence for. As an example, consider
the K-topology on R and the sequence

�
1
n

	1
n=1

. In R, this sequence converges
to 0 but this is not so in the K-topology: for (�1; 1) nK, a neighborhood of 0,
there exists no natural number 1

n 2 (�1; 1) nK, in the �rst place.
In fact, this prompts us to observe that limit points of a set and a limit of

a sequence are essentially di¤erent beasts in topological spaces. This is because
the topology determines which sequence converges. Can we use the information
on the limit points of a set to determine the topology? As one might expect, with
a such a rhetorical question posed and because we�ve seen wilder in arbitrary
topological spaces, the answer is that it is not necessary, unless the topology is
�rst countable.

De�nition 90 Let (X; �) be a topological space and let A � X. The sequential
closure of A, denoted by S (A), is the set of all points that are limits of sequences
in A.
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In general, the following holds:

Theorem 91 A � S (A) � A

Proof. Let x 2 A. Then, the constant sequence x converges to x, hence x 2
S (A). Let z 2 S (A). Then, 9 fxig1i=1 � A such that xi ! z. Let U be
a neighborhood of z. Then, 9N 2 N such that xi 2 U for i � N . Thus,
U \An fzg 6= ; so that x 2 A.

Proposition 92 In the co-countable topology, for X uncountable and K a
proper uncountable subset of X, a sequence converges () the sequence is
eventually constant.

Proof. ( =) ) Let fxig1i=1 = N � K be a convergent sequence and let x 2
S (N). De�ne U := Kn fxn : xn 6= xg. Then U c = Kc [ fxi : n 2 N ^ xn = xg,
which is countable. Hence U is open. Since xn ! x, 9N 2 N such that xn 2 U
for n � N . By de�nition of U this means xn = x for all n � N . Thus, fxig1i=1
is eventually constant.
((= ) Holds trivially in any space.
In this topology, if we regard fxig1i=1 = T as a set, then T is closed in

� . Furthermore, if xi ! x then fxig1i=1 is eventually constantly x. Thus,
S (T ) = T .
Of course the converse doesn�t hold in general but does so under what�s

called the �rst countable topology. In metric spaces, the situation is a lot more
simpler, as we will see in the next section but let us �rst see what a �rst countable
topology is.

De�nition 93 Let (X; �) be a topology and let x 2 X and let Bx be a collection
of neighborhoods of x. Then, Bx is called a local basis of x if, for x 2 U with
U open, 9V 2 Bx such that V � U . That is, each neighborhood of x includes
some member of Bx. (X; �) is called �rst countable if 8x, Bx is countable.
(X; �) is called second countable if (X; �) has a countable basis.

Lemma 94 Let (X; �) be a topological space with basis B and let x 2 X. Then,
fU 2 B : x 2 Ug is a local base at x.

Proof. Let V be a neighborhood of x. Then, 9U� 2 B such that V =
[
�2A

U�

for all � 2 A, where A is some indexing set. In particular, 9i 2 A such that
x 2 Ui � V .

Theorem 95 Let (X; �) be a �rst countable topological space. Then, S (A) = A.

Proof. We only need to prove that A � S (A). Let x 2 A and let fUi : i 2 Ng
be a local base at x.
We can assume, WLOG, that Ui � Uj for i � j. If not then we can let

V1 = U1, V2 = U1 \ U2, ..., Vn =
n\
i=1

Ui. Then, fVi : i 2 Ng is a local base at x

because for U 3 x, 9k such that Uk � U and Vk � Uk � U .
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Now, 8i, Ui \A 6= ;. Let xi 2 Ui \A. Then, xi ! x.
To see this, let U 3 x be a neighborhood of x. Then, 9k such that Uk � U .

But Ui � Uk for i � k. Thus, xi 2 Uk � U for i � k.
Thus, x 2 S (A).
Limits of subsequences are, however, the same as those for the parent se-

quence.

Problem 96 Let (X; �) be a topological space and let fxig1i=1 be a sequence in
X. Prove that xi ! x () every subsequence xij of xi converges to x.

Solution 97 ( =) ) First, we note that ij � j for all i.
Proof. Since ij is a subsequence of natural numbers j, it follows i1 � 1 and,
by induction, assume that ij � j. Then, ij+1 > ij � j =) ij+1 � j + 1.
Now, let xi �! x. Then, 8U 2 � with x 2 U , there exists N 2 N such

that xi 2 U 8i � N . Now, if j > N , then ij � N . Thus xij 2 U for ij � N .
Thus the subsequence xij converges to x. Since xij was arbitrary, therefore any
subsequence xij �! x.
((= ) Assume that every subsequence xij of x converges to x. Then, since

xi is a subsequence of itself, it follows that xi converges to x.

3.2 Sequences in Metric Spaces

De�nition 98 A sequence fxng1n=1 in a metric space (X; d) is said to con-
verge or to be convergent if there is an x 2 X such that lim

n!1
d(xn; x) = 0. Al-

ternatively, a sequence is called convergent if 8� > 0, 9N such that d(xn; x) < �
whenever n > N .

If we cannot �nd an N for any given �, or that if the sequence fails to be
convergent, we say that this sequence diverges. A sequence fxng1n=1 is bounded
if its range fxng1n=1 is bounded.
In metric spaces, limits are unique. This is because a metric space is a

particular instance of a Hausdor¤ Space.
Proof. Let lim

n!1
xn = l1 and lim

n!1
xn = l2 be two limits. Then, 8� > 0, we can

�nd N1 and N2 such that d(xn; l1) < �=2 and d(xn; l2) < �=2 for n > N1; N2.
Let N = max (N1; N2). Then, d (l1; l2) < d (xn; l1) + d (xn; l2) < �=2 + �=2 = �
whenever n > N , 8� > 0. The condition d (l1; l2) < � implies l1 = l2

Exercise 99 If a sequence converges to a point, then any subsequence will con-
verge to that point.

Proposition 100 If a sequence converges, then it is bounded.

Proof. Let xn ! x. Then, we can be assured that we will de�nitely have a
(very large) natural number N such that d (xn; x) < � 8n > N and 8� > 0: Let
m = max (d (x1; x) ; d (x2; x) ; :::; d (xN ; x) ; �). Then, d (xn; x) < m 8n which
really means that every element of the sequence is bounded.
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The converse, however, is usually false. Consider the series (�1)
n

2 . This series
is bounded by �1 yet does not converge as it keeps on alternating between �1=2
and 1=2.

Corollary 101 If a sequence is unbounded, then it is divergent.

Proposition 102 If x is a limit point of a subset A of a metric space (X; d),
then there exists a sequence such that xn ! x.

Proof. This is a particular instance of Problem 80 because metric spaces are
T1. To see to the exact proof, we need to construct a sequence that converges
to this limit point. Since x is a limit point, then we can rest assured that we
have an open ball centred at x of � radius contained in X and containing points
other than x; by de�nition. Hence, we can collect such points and call them xn.
Therefore, d (xn; x) < �. What we need now is to prove that we have an N such
that this is valid for n > N . Since epsilon was arbitrary, we can let it depend
on the index n. So, � = 1=n , say. From a collection of the natural numbers, we
will always have an N such thatN� < 1. This can be seeing by applying the
Archimedean property of real numbers. Now, we have 1 > N� or 1 > N=n or
n > N , which establishes the proof.

Theorem 103 Let M be a nonempty subset of a metric space (X; d). Then

1. x 2 �M () 9xn 2M such that xn ! x

2. M is closed () xn 2M such that xn ! x implies that x 2M:

Proof. For bullet 1, we�ve proven that any limit point will have a sequence
convergent to it. The converse is a trivial result of the de�nition of convergence
and limit points. Bullet two follows by observing that if M is closed, then
M = �M

Proposition 104 If xn �! x and yn �! y in X, then d (xn; yn) �! d (x; y).

Proof. 8� > 0, we can �nd N1 and N2 such that

d(xn; x) < �=2

and
d(yn; y) < �=2

for n > N1; N2. Let N = max (N1; N2). Then,

d (xn; yn) � d(xn; x) + d(x; y) + d(yn; y)

=) d (xn; yn)� d(x; y) � d(xn; x) + d(yn; y)

Also,

d(x; y) � d (x; xn) + d (xn; yn) + d (yn; y)

=) � [d (x; xn) + d (yn; y)] � d (xn; yn)� d(x; y)
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Using the two inequalities, we have

jd (xn; yn)� d(x; y)j � d(xn; x) + d(yn; y) < �=2 + �=2 = �

i.e. jd (xn; yn)� d(x; y)j < � 8n > N .
Notice that in this proof, we�ve treated d (xn; yn) as a sequence with the

index n. Thus, the metric function is continuous.

4 Continuous Functions

4.1 Continuous Functions in Metric Spaces

Open sets also play a role in connection with continuous mappings, where con-
tinuity is a natural generalisation of the continuity known from calculus and is
de�ned as follows:

De�nition 105 Let (X; d1) and (Y; d2) be metric spaces. A mapping

T : X �! Y

is said to be continuous at a point x0 2 X if for every � > 0 there exists a
� > 0 such that

d2 (T (x) ; T (x0)) < �

whenever d1 (x; x0) < �.

T is said to be continuous if it is continuous at every point of X. Alterna-
tively, this de�nition could be phrased as follows:

Theorem 106 A mapping T of a metric space X into a metric space Y is
continuous if and only if the inverse image of any open subset of Y is an open
subset of X.

Proof. Let B � Y be an open set and let T�1(B) = fx j T (x) 2 Bg. We need
to prove that T�1 (B) is open. Let T (x0) 2 B. Since T (x0) is an interior point,
we have d2 (T (x) ; T (x0)) < � 8� > 0. Since T is continuous, this ensures the
existence of a � such that d1 (x; x0) < �. Hence for any � or for any open set, we
can �nd a � or an open set A(x0; �) = fx j d1 (x; x0) < �g. Hence the inverse
image of every open set is open.
The converse of the proof is trivial. We start with B(T (x0) ; �); an open set,

such that T�1 (B) = A is open by suggesting that this set satis�es d (x; x0) < �
for every x 2 A, guaranteeing the existence of the required �.

Theorem 107 Let (X; d1) and (Y; d2) be metric spaces. A mapping

T : X �! Y

is continuous at a point x 2 X ()

xn �! x =) T (xn) �! T (x)
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Proof. If T is continuous at x, then for every � > 0 there exists a � > 0 such
that d2 (T (y) ; T (x)) < � whenever d1 (y; x) < �. If xn �! x, then we can label
the points y when we have an n > N so that d1 (xn; x) < �, which is possible
when d2 (T (xn) ; T (x)) < �; for every � > 0 and n > N:
The converse of the proof is trivial.

De�nition 108 Let (X; dX) and (Y; dY ) be metric space and let f : X �! Y .
Then, f is uniformly continuous if 8� > 0, 9� > 0 such that dX (a; b) <
� =) dY (f (a) ; f (b)) < � for every a; b 2 X.

It is easy to see that uniform continuity implies continuity. The converse is
not true. Consider f (x) = x2 on R with standard metric. This is continuous
but not uniformly continuous. Let � = 1 and � > 0. Let x = y � �

2 . Then,
jx� yj = �

2 < �. Then, jf (x)� f (y)j =
��y2 � x2�� = jy + xj jy � xj � jy + xj � =��2y� � �2��. For y >> 0, then ��2y� � �2�� > 1

Of particular interest is the convergence of sequence of functions fn. How-
ever, in this case, we also have to consider the domain of the functions, as well.
In the ordinary notion of continuity, this convergence will depend on each point
of the domain, giving the name �point-wise convergence�. Apart from this no-
tion of continuity, we also have the notion of uniform continuity, in which the
elements of the domain do not matter. Thus, in uniform continuity, we have

De�nition 109 A sequence of functions fn(x) converges uniformly if 8� >
0, 9N such that d(fn (x) ; f (x)) < � 8x whenever n > N

In uniform convergence, we have convergence of functions for every element
of the domain. This type of convergence is important when dealing with spaces
involving continuous functions. In fact, if a sequence of function converges to a
function, that is lim

n!1
fn = f , then this is valid for all x. That is, lim

n!1
fn (x) =

f (x). That � in the de�nition will depend upon x if the convergence is point-wise
and will not if the convergence is uniform.
There is another notion of convergence in the space of functions:

De�nition 110 A sequence of functions fn(x) converges pointwise if 8� > 0
8x, 9N such that d(fn (x) ; f (x)) < � whenever n > N .

The di¤erence is subtle: here N depends both on x and � whereas in the
former, for each � you need to be able to �nd an N for all x in the domain of
the function. In other words, N can depend on � but not on x. Like uniform
and ordinary continuity, the former de�nition is global in nature whereas the
other talks about convergence depending on the domain.

Exercise 111 Show the uniform convergence implies pointwise convergence but
not conversely.

Theorem 112 If a series of functions converges uniformly, then the limit is
continuous
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Proof. Let fn (x) �! f (x) uniformly. Then, we have anN such that 8� > 0 8x;
d(fn (x) ; f (x)) <

�
3 whenever n > N . We also have continuous fn (x) so that

8� > 0; 9� such that d(fn (x) ; fn (y)) < �
3 whenever d (x; y) < �. The uniform

continuity is valid for all x 2 D(f) and, in particular, whenever d (x; y) < �.
Hence, whenever d (x; y) < �, we have

d(f (x) ; f (y)) � d (fn (x) ; f (x)) + d (fn (x) ; fn (y)) + d (fn (y) ; f (y))

<
�

3
+
�

3
+
�

3
= �

so that f (x) is continuous.
Note that the above proof has to be valid for all x. Hence, convergence in

C[a; b] is always uniform and never point-wise.

4.2 Continuous Functions in Topological Spaces

Continuous functions are topology preserving maps. That is, let (X; �X) and
(Y; �Y ) be two topological spaces. Let f : X �! Y be a function. To �gure
out an apropriate class of functions, we may ask if � = ff (U) : U 2 �Xg forms
a topology?. No, since not every f is surjective and hence Y 2 �2 may not
necessarily be true. However, the collection � =

�
f�1 (U) : U 2 �Y

	
works.

To successfully show this, we recall two facts from set-theory: f�1 (U \ V ) =
f�1 (U) \ f�1 (V ) and f�1 (U [ V ) = f�1 (U) [ f�1 (V ) for any function f .

Theorem 113 � =
�
f�1 (U) : U 2 �Y

	
is a topology on X.

Proof. ; = f�1 (;) and X = f�1 (Y ). Let fU�g�2A be a collection of sets in
� for an arbitrary indexing set A. Then, there exists U 0� 2 � such that U� =

f�1 (U 0�) and so f
�1

 [
�2A

U 0�

!
=
[
�2A

f�1 (U 0�) =
[
�2A

U�. Since
[
�2A

U 0� 2 �Y ,

we must have that
[
�2A

U� 2 � . Now let fUigi2I be a �nite collection of sets in

� . Then, there exists U 0i 2 � such that Ui = f�1 (U 0i) and so f
�1

 \
i2I
U 0i

!
=\

i2I
f�1 (U 0i) =

\
i2I
Ui. Since

\
i2I
U 0i 2 �Y , we must have that

\
i2I
Ui 2 � .

This topology has a name: f� (�Y ), the pull-back topology.

De�nition 114 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a function. Then, f is continuous 8U 2 �Y , f�1 (U) 2 �X . That
is, if every open set in Y has an open pre-image.

Example 115 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a function. Then, the constant function f (x) = c is continuous:
let U be an open set in �Y . If U = ;, then f�1 (;) = ; implies f�1 (U) is open.
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Let U 6= ;. Then, c 2 U or c 62 U . If c 62 U , then f�1 (U) = ; so that f�1 (U) is
open. If c 2 U , then, f�1 (U) = X by de�nition of constant function and hence
f�1 (U) is again open.

Example 116 If (X; �X) is a discrete topological space and (Y; �Y ), is any
topological space, then f : X �! Y is continuous: let U be an open set in �Y .
If U = ;, then f�1 (;) = ; implies f�1 (U) is open. If U 6= ; but if f�1 (U) = ;
(f may not be surjective), then again f�1 (U) is open. Assume f�1 (U) 6= ;
for U 6= ;. Then, U = fy : f (x) = y and x 2 Xg, by de�nition of a function.
Then, we let A = fx : f (x) = y 2 Ug, so that A is a non-empty subset of X. By
construction, f�1 (U) = A. Since �X is discrete and A is a non-empty subset
of X, it follows that A is open. That is, f�1 (U) = A is open.

Example 117 If (X; �X) is any topological space and (Y; �Y ), is the indiscrete
topological space, then f : X �! Y is continuous: let U be an open set in �Y .
Then either U = ; or U = Y . If U = ;, then f�1 (;) = ; implies f�1 (U) is
open. If U = Y , then f�1 (Y ) = X is open.

Proposition 118 f is continuous i¤ f� (�Y ) � �X and f� (�Y ) is the coarsest
topology on X which makes f continuous.

Proof. ( =) ) Let f is continuous. As proved above, f� (�Y ) is a topology
on X. If U 2 f� (�Y ), then U is the pre-image of an open set by de�nition of
pull-back topology, so that U 2 �X , by de�nition of continuity. Assume that
there exists a topology � � f� (�Y ). Then, there exists an open set U in f� (�Y )
and not open in � but then U is the pre-image of an open in set in �Y so that
U is open in � , a contradiction.
((= ) Let f� (�Y ) � �X and f� (�Y ) is the coarsest topology on X. Assume

that f is not continuous. Then, there exists an open map such that f�1 (U) = V
(say) is not open. But this would imply that V is not open in �X so that V is
not open in f� (�Y ), a contradiction.

Theorem 119 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a function. Let B be a basis (resp. subbase) for �Y . Then, f is
continuous() f�1 (U) 2 �X for every U 2 B.

Proof. ( =) ) Let U 2 B. Then, U is open and so, if f is continuous, then
f�1 (U) is open.
((= ) Let U � V be open in Y . Then. U =

[
U� for U� 2 B. Then,

f�1 (U) = f�1
�[

U�

�
=
[
f�1 (U�), which is open.

We can show that the �-� de�nition in calculus implies the de�nition for
topological space. To recall, f : R �! R be �-� continuous() 8� > 0, 9� > 0
such that jx� yj < � =) jf (x)� f (y)j < �. Let U be an open set, � be a
point of U . Since each point of U is an interior point, we can have �� > 0 such
that � 2 N�� (�) � U where N�� (�) = f� : j�� �j < ��g. We will �rst show that
U =

[
�2U

N�� (�). Clearly, N�� (�) � U =)
[
�2U

N�� (�) �
[
�2U

U = U . Conversely,
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let y 2 U . Since U is open and every point of U is an interior point, then,
y 2 N�� (�) � I for some � 2 U so that y 2

[
�2U

N�� (�) and thus U �
[
�2U

N�� (�).

To show that f�1 (U) is open, let a 2 f�1 (U). That is, f (a) 2 U =[
�2U

N�� (�). Then, there exists �� such that f (a) 2 N�� (�) or that a 2 f�1 (N�� (�)).

We now need to show that f�1 (N�� (�)) is open. Let � = ��� jf (a)� �j. By de-
�nition of �-� continuity, we are guaranteed to �nd a � such that jx� aj < � =)
jf (x)� f (a)j < �. Consider x 2 N� (a). Then, jf (x)� �j = jf (x)� f (a) + f (a)� �j �
jf (x)� f (a)j + jf (a)� �j < � + jf (a)� �j = �� so that f (x) 2 N�� (�) � U , or
that x 2 f�1 (N�� (�)) � f�1 (U) : Thus, N� (a) � f�1 (N�� (�)). E¤ectively,
this means that for any a 2 f�1 (N�� (�)), we have a � such that N� (a) �
f�1 (N�� (�)), implying that a is an interior point of f

�1 (N�� (�)). Since a was
arbitrary, we have that f�1 (N�� (�)) is open. In summary, we�ve shown that
for each open ball contained in U , the inverse image of that open ball is open.
Since the arbitrary union of open sets is open and U =

[
�2U

N�� (�), therefore

f�1 (U) = f�1

 [
�2U

N�� (�)

!
=
[
�2U

f�1 (N�� (�)) is open.

De�nition 120 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a function. Then, f is continuous at x 2 X if for every neigh-
borhood V which contains f (x), there exists a neighborhood U of x such that
f (U) � V .

Theorem 121 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a function. Then, f is continuous () f is continuous at every
x 2 X

Proof. ( =) ) Let f be continuous, x 2 X and let V be a neighborhood of
f (x). Then, by continuity, U = f�1 (V ) is open, U 3 x and f (U) � V
((= ) Let V � Y be open. For each x 2 f�1 (V ), we know that there will

be an open set Ux 3 x such that f (Ux) � V . Let U =
[

x2f�1(V )

Ux. Then, U

is open is it is the union of open sets. We need to show that U = f�1 (V ). Let
x 2 f�1 (V ). Then, x 2 Ux so that x 2

[
x2f�1(V )

Ux = U and hence f�1 (V ) � U .

On the other hand, if y 2 U , 9Ux such that y 2 Ux. By hypothesis, f (Ux) � V
so that y 2 f�1 (V ).

Theorem 122 Let (X; �X), (Y; �Y ) and (Z; �Z) be topological spaces and let
f : X �! Y , g : Y �! Z be continuous functions. Then, g � f is continuous.

Proof. Let U be an open set in �Z . Then, g�1 (U) is open in �Y since
g is continuous. Since f is continuous, f�1

�
g�1 (U)

�
is open in �X . Since
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(g � f)�1 (U) = f�1
�
g�1 (U)

�
, then for any open set U in �Z , (g � f)�1 (U) is

open in �X . Hence g � f is continuous.
The converse is not true. Let X = Y = Z = R with the usual topology

f (x) =

�
1 x 2 RnQ
0 x 2 Q

and

g (x) =

�
0 x 2 RnQ
1 x 2 Q

Then, (g � f) (x) = 1 for all x. That is, a constant function, which, as we�ve
seen in the previous question, is continuous. However, f and g are both not
continuous. Proof: Let U = (a; b) be any open set in R with a; b 2 R and a < b.
Then, U contains both rationals and irrationals and so, f�1 (U) = g�1 (U) =
f0; 1g, which is not an open set because either point is not an interior point: we
can never �nd an open set contained in f0; 1g, centered at 0 or 1 for, if we did,
then we would get the contradiction that f0; 1g is uncountable!

Theorem 123 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a function. Then, f is continuous() the inverse image of every
closed set is closed.

Proof. ( =) ) Let C � Y be closed. Then, Cc is open, so if f is continuous,
then f�1 (Cc) =

�
f�1 (C)

�c
and so f�1 (C) is closed.

((= ) Let U be an open set in Y . Then, f�1 (U c) is closed in X or that
f�1 (U) is open.

Problem 124 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a function. Prove that f is continuous () for each B � Y ,
f�1 (B) � f�1

�
B
�

In other words, f is continuous if and only if the closure of the preimage of
B is contained in the preimage of the closure of B

Solution 125 ( =) ) Let f be continuous and let B � Y . Then, B is closed
and so Y � B is open. Thus, f�1

�
Y �B

�
is open. Next, we prove that

f�1
�
Y �B

�
= X�f�1

�
B
�
. f�1

�
Y �B

�
=
�
x : f (x) 2 Y �B

	
=
�
x : f (x) 62 B

	
=

X �
�
x : f (x) 2 B

	
= X � f�1

�
B
�
. Now, since Y � B is open and f is con-

tinuous, then X � f�1
�
B
�
is open and, therefore, f�1

�
B
�
is closed so that

f�1
�
B
�
= f�1

�
B
�
. Now, B � B implies f�1 (B) � f�1

�
B
�
by properties of

a function, which implies f�1 (B) � f�1
�
B
�
by properties of closure operator.

Hence f�1 (B) � f�1
�
B
�
= f�1

�
B
�

((= ) Let f�1 (B) � f�1
�
B
�
for some arbitrary B � Y . Let A be an

arbitrary closed set in Y . We need to show that f�1 (A) is closed. Using
f�1 (B) � f�1

�
B
�
and A = A, we have f�1 (A) � f�1 (A). That is, f�1 (A)

contains all its limit points. Hence f�1 (A) is closed.
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How do sequences behave under continuous functions?

Theorem 126 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a continuous function. If fxig is a sequence in X and xi �! a for
some a 2 X, then ff (xi)g in Y converges to f (a)

Proof. Let V be a neighborhood of f (a). Then, U = f�1 (V ) is open and
a 2 U . Then, 9N 2 N such that xi 2 U for i � N =) f (xi) 2 V for i � N so
that f (xi) converges to f (a).
Does the converse hold? Let (X; �X) and (Y; �Y ) be two topological spaces

and let f : X �! Y be a function such that if fxig � X and xi �! a =)
f (xi) �! f (a). Does f have to be continuous? No. Let X be any uncountable
set and Y = X. Let �X be the co-countable topology and let �Y be discrete.
De�ne idA : X �! Y . Then, idA is not continuous because f� (�Y ) is also
discrete topology but clearly, �X � �Y strictly. Also, xi �! x in �Y ()
fxig1i=1 is eventually constantly x, unless we add the requirement that X is �rst
countable.

4.3 Pro�nite topology

Let X = Z. We can de�ne a topology on Z using arithmetic progressions in
Z and the empty set as a basis. That is, for Na (b) = fa+ nb : n 2 Zg and
B = fNa (b) : a; b 2 Zg [ f;g. Let x 2 Z. Then, x 2 N0 (x) because x = 0 + 1x
where a = 0 and b = x. This satis�es B1. Next, let Na1 (b1), Na2 (b2) 2 B and
x 2 Na1 (b1)\Na2 (b2). Then, x = a1+nb1 and x = a2+mb2 for some n;m 2 Z,
by de�nition of elements of B. Notice that a1 + nb1 = a2 +mb2 =) nb1 �
mb2 = a2� a1 forms a Diophantine Equation. The solution of this Diophantine
equation, that is, numbers n;m, exist, by assumption (x 2 Na1 (b1)\Na2 (b2)).
Thus, if there is one element in the intersection of two elements of B, (which
we assume there is), there are others. Let d = gcd (b1; b2). Then, n � k b2d and
m + k b1d are other solutions of the Diophantine equation nb1 �mb2 = c where
c = a2�a1 with unknowns m;n, where k is an integer. Thus, we are guaranteed
to �nd intersection points y of Na1 (b1) and Na2 (b2) at y = a1+

�
n� k b2d

�
b1 =

a1 + nb1 � k lcm (b1; b2) and y = a2 +
�
m+ k b1d

�
b2 = a2 +mb2 + k lcm (b1; b2),

provided thatNa1 (b1)\Na2 (b2) 6= ;. Thus, for b = lcm (b1; b2) and a = a2+mb2
or a1 + nb1 (both work!), the set Na (b) � Na1 (b1) \ Na2 (b2) and x 2 Na (b).
This shows that B is a basis.
The topology generated by this basis is certainly coarser than the discrete

topology but only slightly so.
Let f : Z �! Z=3Z. Let Z=3Z have the discrete topology. Then, basis for

Z=3Z = B = ff[0]g ; f[1]g ; f[2]gg. Then, f�1 (f[0]g) is the coset 3Z, an arith-
metic progression, and is open in the pro�nite topology, f�1 (f[1]g) = 1 + 3Z,
open in pro�nite topology and lastly f�1 (f[2]g) = 2 + 3Z, open in pro�nite
topology.
In fact, let G be any group with discrete topology. Let f : Z �! G be a

homomorphism. Then, f is continuous if Z has the pro�nite topology. If g 2 G.

41



case I, g 62 f (Z), then f�1 (g) = ;. If g 2 f (Z), then f�1 (g) = h + ker f in
general fgg has a pre-image of Nh (ker f), which is open.
Thus another way of de�ning pro�nite topology on Z is by saying that it is

the coarsest topology on Z such that all homomorphisms to �nite groups are
continuous.

5 Construction of Topologies 2

5.1 Subspace Topology

De�nition 127 Let (X; �) be a topological space and let A � X. Can we put
a topology on A? Yes. Let �A =

�
U 2 2A : U = A \ V for some V 2 �

	
. Such

a topology is called the subspace topology.

Theorem 128 �A is a topology on A

Proof. A = A \ X so A is open in �A. Next, ; = A \ ; so that ; 2 �A.
Next, let fU�g�2B be a collection of open sets in �A. Then, for each � 2 B,

9U 0

� = A \ U 0

� . Then,
[
�

U� =
[
�

�
A \ U 0

�

�
=

0@[
�

A

1A \
0@[

�

U
0

�

1A. The �rst
term is A, the second is open in X. Hence arbitrary union of open sets is open in
�A. Finally, let U1; U2 be two open sets in �A. Then, there exists U 01, U

0
2 2 � such

that Ui = A\U 0i for i = 1; 2. Then, U1\U2 = A\U 0

1\A\U 02 = A\
�
U

0

1 \ U 02
�
.

Thus, U1 \ U2 is open in �A.

Theorem 129 Let (X; �) be a topological space, let A � X and �A be the
subspace topology. Let iA : A �! X be the inclusion map. Then, iA is continous.
Morevoer, the subspace topology is the coarsest topology on A so that iA is
continuous

Proof. Let U � X be open. Then, i�1A (U) = A \ U and the pre-image of U is
open in A. This topology is coarsest because of it forms the pull-back topology.
More speci�cally, let � 0 be a topology on A for which iA is continuous. To prove
the 2nd part, we will prove the contrapositive that if there is a coarser topology
than the subspace topology, then i is not continuous. Since there is a topology
� 0 coarser than �A, there must be an open set V be an open set of in � such
that A \ V is not open in � 0. But then i�1 (V ) = A \ V is not open, implying
that i is not continuous.

Example 130 Let X = R with usual topology and A = Z. Then, the subspace
topology is the discrete topology: let U 2 2Z. Then, U = Z\(inf U � 1; supU + 1)
where (inf U � 1; supU + 1) � R is open and hence U is open in the subspace
topology.

42



Example 131 Let X = R2 and A = f(x; 0) : x 2 (a; b) � Rg � X. There
is an order on R2 such that (x0; y0) � (x; y) if x � x0 or if x = x0 and
y � y0. De�ne open sets on R2 as follows: let p; q 2 R. Then, interval
(p; q) =

�
r 2 R2 : p < r < q

	
. This is exactly how the R1 Euclidean space may

be constructed, as well. Open intervals are then strips in which lower line of the
left-most strip is excluded and upper line of the right-most strip is excluded. Let
q = (x; 1) and p = (x;�1) be points in R2 and B = (x; 0) 2 A be a set. Then,
B \ (p; q) = (a; b).

Lemma 132 Let (X; �X) and (Y; �Y ) be topological spaces and suppose that
X = A[B where A and B are both open (or closed) in X. Let f : A �! Y and
g : B �! Y be continous functions such that if x 2 A \ B, then f (x) = g (x).
Then, there exists unique continuous function h : X �! Y given by

h (x) =

�
f (x) if x 2 A
g (x) if x 2 B

Proof. Let A;B 2 �X and let V � Y be open. Let UA = f�1 (V ) and
UB = g�1 (V ). By hypothesis, UA is open in �A and UB is open in �B so that
there exists open sets U 0A, U

0
B in ambient space such that UA = A \ U 0A and

UB = B \ U 0B . This step is crucial, as can be seen from the counter-example
below. Since A [B = X and each are open in �X , we must have

UA [ UB = (A \ U 0A) [ (B \ U 0B)
= ((A \ U 0A) [B) \ ((A \ U 0A) [ U 0B)
= (A [B) \ (U 0A [B) \ (A [ U 0B) \ (U 0A [ U 0B)
= X \ (U 0A [B) \ (A [ U 0B) \ (U 0A [ U 0B)
= (U 0A [B) \ (A [ U 0B) \ (U 0A [ U 0B)

open. Let U = UA [ UB . We now show that h�1 (V ) = U . This is because if
x 2 U , then, WLOG, assume x 2 UA, h (x) = f (x) 2 V so that U � h�1 (V ).
Similarly, if x 2 h�1 (V ), then WLOG assume x 2 A =) h (x) = f (x) 2
V =) x 2 UA =) U = h�1 (V ). Since V was arbitrary, we are done.

Example 133 X = R, A = (�1; 0] and B = [0;1). Let h : R �! R such
that

h (x) =

�
x if x < 0
2x if x � 0

if f : A �! R and g : B �! R as f = hjA, g = hjB. Then, f�1 ((a; b)) = (a; b)
if b � 0, f�1 ((a; 0]) = (a; 0], g�1 ((a; b)) =

�
a
2 ;

b
2

�
, a � 0 and g ([0; b)) =

�
0; b2
�
.

As a counter example, consider the indicator function of rationals and ir-
rationals. Then, f (x) = 1 for A = Q, g (x) = 0 for B = Qc. As shown in
Example 115, constant functions are always continuous, considering the sub-
space topologies. However, the function h (x), which is the indicator function
for rational numbers, is not continuous. This is because both sets A and B are
neither closed nor open in the Euclidean topology.
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5.2 Homeomorphisms

De�nition 134 Let (X; �X) and (Y; �Y ) be two topological spaces and let f :
X �! Y be a continuous function. Then, f is a homoemorphism if f is
bijective and if f�1 is continuous

Example 135 X = (��=2;��=2) and Y = R with the usual topologies. For
x 2 X, de�ne f (x) = tanx. Then, f satis�es properties above.

As a non-example, consider X = [0; 2�) and Y =
�
(x; y) : x2 + y2 = 1

	
taking the subspace topologies. For t 2 X, de�ne f (t) = (cos t; sin t). It is easy
to see that f is continuous and bijective but f�1 is not continuous: for � > 0;
f ([0; �)) is not open in Y .

5.3 Quotient Topology

Can we get a natural topology from a map? Let A;X be sets. If f : A �! X is
an ijnection, then f (A) � X and we can get a topology. This is dual to quotient
topology:

De�nition 136 Let p : X �! A be a surjection and let (X; �) be a topological
space. The set �p =

�
U 2 2A : p�1 (U) 2 �

	
is called the quotient topology.

This is a topology where a set is open if its pre-image is open in the ambient
space.

Theorem 137 �p is a topology on A

Proof. We can get a topology on A even if p is not surjective. Since p�1 (;) = ;
for any function in general and p in particular, and ; is open in any topology,
therefore ; 2 �p. Next, as a set, p�1 (A) = fx : p (x) 2 Ag. Since p is a function,
p (x) 2 A for any x 2 X. Thus, p�1 (A) = X. Since X is open in X, thus
A 2 �p. Let � be an arbitrary indexing set,  be an index and let U 2 �p
for each . Then, p�1 (U) is open in X. Since X is a topological space, it

must be that
[
2�

p�1 (U) is open in X. That is,
[
2�

p�1 (U) = p�1

0@[
2�

U

1A
is open in X. Hence

[
2�

U 2 �p. Finally, let I be a �nite indexing set, i

be an index and let Ui 2 �p for each . Then, p�1 (Ui) is open in X. Since

X is a topological space, it must be that
\
i2I
p�1 (U) is open in X. That is,

\
i2I
p�1 (U) = p�1

 \
i2I
U

!
is open in X. Hence

\
i2I
U 2 �p, showing that �p

is a topology.
Note again that nowhere have we used the fact that p is surjective.
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De�nition 138 Let (X; �X) and (A; �A) be topological spaces and p : X �! A
be surjective map. p is said to be an open map (resp. closed map) if U 2
�X =) p (U) 2 �A (respectively, U is closed in �X =) p (U) is closed in
�A). p is a quotient map if p�1 (U) 2 �X () U 2 �A.

Note that p is not assumed to be continuous.

Theorem 139 Let (X; �X) be topological space and p : X �! A be surjective
map. Then,

1. p is continuous if A is equipped with the quotient topology.

2. The quotient topology is the �nest topology on A for which p is continuous.

3. Quotient topology is the unique topology for which p is a quotient map.

Proof. 1. Let U 2 �p. Then, p�1 (U) 2 �X and so p is continuous. 2. Let
� 0 be a topology on A for which p is continous and let U 2 � 0. Then, p is
continuous =) p�1 (U) 2 �X and so U 2 �p so that � 0 � �p. 3. Already
proved by showing that it is the �nest.
If it is not already clear that p has to be surjective, here is an alternate

explaination: let p : X �! A be any map and let B = p (X). Then, the
subspace topology coming from regarding B � A with the topology �p =�
U 2 2A : p�1 (U) 2 �

	
onA is the same as the topology � 0 =

�
U 2 2B : p�1 (U) is open in X

	
for the map p : X �! B but is strictly coarser than the topology �p.
Proof. Let �B = fB \ U : U is open in Ag. We need to show that �B = � 0 =�
U 2 2B : p�1 (U) is open in X

	
. Let V 2 �B . Then, 9 an open set U in A

such that V = B \ U . Since U is open in A, p�1 (U) is open in X. Then,
p�1 (V ) = p�1 (B \ U) = p�1 (B) \ p�1 (U) = X \ p�1 (U) so that p�1 (V ) is
open in X. Hence V 2 � 0 so that �B � � 0. Conversely, let U 2 � 0. Then, p�1 (U)
is open in X so that U 2 �p and that U is open in A. Furthermore, since X
is a topology, p�1 (U) \ X is open in X or that p�1 (U) \ p�1 (B) is open in
X. That is, p�1 (B \ U) is open in X. Thus, there exists an open set U in A
such that B \ U is open in B. In other words, U 2 �B , showing that � 0 � �B ,
concluding that �B = � 0.
The topology � 0 is strictly coarser than �p. This is because B � A =)

2B � 2A. Let U 2 � 0 � 2B � 2A. Then, p�1 (U) is open in X so that U 2 �p
and that U is open in A. It follows that

�
U 2 2B : p�1 (U) is open in X

	
��

U 2 2A : p�1 (U) is open in X
	
. That is, � 0 � �p or that �p is �ner than � 0.

From �B = � 0, the open sets U of �p not in � 0 are those for which B � U but
that B 6= U .
Thus, the condition of surjectivity in a quotient map gives tells us that the

quotient topology is the �nest topology on A for which p is continuous. Thus,
In light of 1 in Theorem 139, some authors call the quotient map �stronger
continuity�.

Example 140 Let X = [0; 1] and Y = S1 =
�
(x; y) : x2 + y1 = 1

	
� R2. Let

f : X �! Y such that f (t) = (cos 2�t; sin 2�t). Then, any set open in the
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subspace topology on Y is open in the quotient topology. Thus, f is a quotient
map. If X = [0; 1), then f is continuous so that subspace topology is coarser
than quotient topology. However, f is not a quotient map because the map of the
interval [0; �) is not open so that quotient topology is not coarser than subspace
topology.

Example 141 (Identi�cation spaces) Let (X; �) be a topological space, f :
X �! Y be a surjection and Y have the quotient topology. De�ne x � y if
f (x) = f (y). Let X� be the set of equivalence classes. Then, � : X �! X�

such that � (x) = [x] so that � is a surjection. There exists an ef : X� �! Y

such that ef � � = f . ef is a bijection. If X� has the quotient topology, then ef is
a homeomorphism.

Problem 142 Consider the equivalence relation on R given by x � y if there
is � > 0 so that y = �x.

1. How many equivalence classes are there? Describe them.

2. Let Y be the set of equivalence classes of this equivalence relation and
let p : R �! Y given by p (x) = [x], where [x] is the equivalence class
containing x. Show that the quotient topology on Y is not Hausdor¤.

3. Show that there is no Hausdor¤ topology on Y for which the map p : R �!
Y is continuous.

Solution 143 (1) There are 3 classes. 0 is not related to any other non-zero
element. Let x 6= 0. Then, either x > 0 or x < 0. For the sake of contradiction,
assume x � 0. Then, 9� > 0 such that 0 = x�. But x > 0, � > 0 implies
x� > 0 so that 0 > 0, a contradiction. In the second case, i.e., x < 0, if x � 0,
then, 9� > 0 such that 0 = x�. But x < 0, � > 0 implies x� < 0 so that
0 < 0, another contradiction. Hence x 6� 0 for any x 6= 0. In other words,
one class is [0] = f0g. The second class consists of positive real numbers: let
x > 0 and y > 0. Then, y = y

xx. Clearly,
y
x > 0 so that we can have � = y

x
so that x � y. Thus, any two positive real numbers belong to one class so that
the second class is [x] = fx : x 2 R and x > 0g. The third class is of negative
numbers: let x < 0 and y < 0. Then, y = y

xx. Clearly,
y
x > 0 so that we can

have � = y
x . Thus, any two negative real numbers belong to one class so that the

third class is [x] = fx : x 2 R and x < 0g. Assume that there is a fourth class,
say [�]. Then, the Trichotomy law applied on the representative � gives � > 0,
� < 0 or � = 0. In either case, � belongs to either existing classes so that [�]
is not di¤erent from already existing classes.
(2) Denote [+] = fx : x 2 R and x > 0g and [�] = fx : x 2 R and x < 0g.

The quotient topology on Y = f[+] ; [�] ; [0]g has to be the �nest topology for
which p is continuous. Clearly, f[0]g cannot be an open in Y since p�1 (f[0]g) =
f0g, which is not open. Neither can f[�] ; [0]g and f[+] ; [0]g since the inverse
images of these sets are half-open intervals which are closed in the usual topology.
Then, either [�] has to be closed or [+]. Hence the topologies that remain are
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f;; Y g or f;; Y; f[+]gg ; f;; Y; f[�]gg and f;; Y; f[+]g ; f[�]g ; f[+] ; [�]gg. The
�nest of these is the last one, which is not Hausdor¤ since the points [0] and
[+] do not have any disjoint neighborhoods.
(3) Already answered above.

5.4 Product Topology

We now move on to talk about product topologies but �rst we need to talk
about Cartesian products for arbitrary sets.

De�nition 144 Let A be an indexing set and let X� be a collection of sets for
� 2 A. Let X =

[
�2A

X�. The Cartesian Product of fX�g�2A, denoted byY
�2A

X�, is the set of functions f : A �! X such that f (�) 2 X�.

Thus,
Y
�2A

X� � XA.

Example 145 For A = f1; 2g, the de�nition reduces to X1 �X2. For X� = R
for each � and A = f1; :::; ng. Then,

Y
�2A

X� = Rn. Similarly, if X� = B for

each �, then
Y
�2A

X� = BA.

De�nition 146 A projection function, for each � 2 A, is a map �� :Y
�2A

X� �! X�, de�ned as �� (f) = f (�) 2 X�.

This map surjective.
Proof. Let a 2 X� . Then, by Axiom of Choice, 9f : A �! X, de�ned by
f (�) = a if a 2 X� . Then, 9f such that �� (f) = f (�) = a.
Let (X�; ��) be a topological space for each �. Let

B =

(Y
�2A

U� : U� 2 �� for each �
)
�
Y
�2A

X�

This is a basis. The operations on this are the usual, sensical ones: let U ,V 2 B.
Then, U =

Y
�2A

U� and V =
Y
�2A

V� and U \ V =
Y
�2A

(U� \ V�) 2 B. Et cetera.

The topology on
Y
�2A

X� generated by B is called the box topology. For

A = f1; 2g and X� = R, the box topology R2 is the same as the Euclidean space
but things aren�t necessarily this neat.
For example, let A = N and X� = R. Then,

Y
�2A

X� = RN is simply

sequences of real numbers. Let RN have the box topology. De�ne f : R �! RN
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by constant sequences f (t) = (t; t; :::). This function is not continuous: let
U = (�1; 1)�

�
� 1
2 ;

1
2

�
�
�
� 1
3 ;

1
3

�
� :::. This is an open set in the box topology.

However, f�1 (U) =
�
r : r 2

�
� 1
n ;

1
n

�
8n
	
= f0g which is not open.

Problem here is the this box topology has too many open sets. To see
this, let f : Y �!

Y
�2A

X� and f� : Y �! X� with �� � f = f� where �� :Y
�2A

X� �! X� . Take Y = R and and
Y
�2A

X� = RN. Then, the fk (t) = t for

each natural number k so that the we get �extra�open sets when we apply f .
This box topology is then replaced by what�s called the product topology: for
a topological space (X�; ��) be for each � 2 A, let

B =

(Y
�2A

U� : U� 2 �� for each � and U� = X� for all but �nitely many � 2 A
)
�
Y
�2A

X�

This is a basis for product topology.

De�nition 147 Let fX�; ��g�2A be a collection of topological spaces and X =[
�2A

X�. Then,
Y
�2A

X� =
�
f 2 XA : f (�) 2 X�

	
has the product topology

with basis B de�ned above.

Proposition 148 If jAj <1, then product topology = box topology.

Example 149 For A = f1; 2g and X� = R, the box topology R2 is the same as
the Euclidean space. Also, for U = (�1; 1) �

�
� 1
2 ;

1
2

�
�
�
� 1
3 ;

1
3

�
� ::: is not an

open set if A = N.

Problem 150 Let X be a topological space and let � � X�X be the diagonal.
In other words, � = f(y; y) : y 2 Xg. Prove that X is Hausdor¤ if and only if
� is a closed subset of X �X.

Solution 151 ( =) ) Let X be a Hausdor¤ space. Then, for each y 2 X, fygc
is open. It follows that fygc � fygc = f(y; y)gc is open in the product topology,
and that

[
y2X

f(y; y)gc = �c is open in the product topology, since arbitrary

union of open sets is open. That is, � is closed.
((= ) Let � be closed in X �X. Then, �c is open. Let x; y 2 X be two

distinct points. Then, (x; y) 62 � or that (x; y) 2 �c. Since �c is open, (x; y)
is an interior point so that there exists a neighborhood N in X � X such that
(x; y) 2 N � �c. Since N is an open set, 9 basis elements U; V , open sets in
X, with x 2 U , y 2 V , such that N � U � V . Since U � V � �c, it must
be that U \ V = ; for otherwise if z 2 U \ V , then z 2 U and z 2 V so that
(z; z) 2 U � V but that U � V � �c means that (z; z) 2 �c, a contradiction.

Theorem 152 Let fX�; ��g�2A be a collection of topological spaces such thatY
�2A

X� is the product topology. Let (Y; �) be a topological space and let f : Y �!

48



Y
�2A

X� be a function. Then, f is continuous () f� = �� � f is continuous

for each � 2 A.

Proof. ( =) ) Assume that f is continuous. Let � 2 A. To show that f� =
�� � f is continuous, let U � X� be open. Then, f

�1
� (U) = f�1 � ��1� (U). We

note that ��1� (U) =
Y
�2A

U� where U� = U if � = � and U� = X otherwise. But

f is continuous so that f�1 � ��1� (U) is open in Y . That is, projection maps
are continuous. Note: this part holds even for box topology.
((= ) Let B be a basis for

Y
�2A

X� and let U 2 B. Then, 9 �nite set F � A

such that U =
Y
�2A

U� where U� � X� is open and U� = X� if � 62 F . For each

� 2 F , let V� = f�1� (U�) � Y and let V =
\
�2F

V� (is open in Y ).

Now we show that f�1 (U) = V . Even though this is true without F being
�nite, but in this case, V may not be open. This is where the �niteness of F
comes in.
8� 2 F , de�ne W� =

Y
�2A

S� where

S� =

�
U� if � = �
X� if � 6= �

We can check that U =
\
�2F

W�. Then, f�1 (U) = f�1

 \
�2F

W�

!
=
\
�2F

f�1 (W�) =

\
�2F

f�1� (U�) = f�1�

 \
�2F

U�

!
= V .

Example 153 f : [0; 1] �! R2 with f (t) = (cos t; sin t) and �1 : R2 �! R
and �2 : R2 �! R. Then, f1 (t) = cos t = (�1 � f) (t) and f2 (t) = sin t =
(�2 � f) (t). This map is continuous in the product topology and, therefore, the
box topology.

6 Connectedness

Recall the famous

Theorem 154 (Intermediate Value Theorem) Let f : R �! R be contin-
uous. Let a; b 2 R such that f (a) > d, f (b) < d, then there exists c 2 R such
that f (c) = d.

Can we say the same for a continuous f : X � R �! R? That is, if a; b 2 X
such that f (a) > d, f (b) < d, then does there exists c 2 X such that f (c) = d?
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It may be true with X = R, obviously. It is also true in [0; 1], [0; 1) or may be
even the half-open in�nite interval. It is obviously false for X = (�2; 1) [ (1; 2)
for f (x) = x3. The IVT is true when X is �one piece�. Topologically, this is
de�ned as follows:

De�nition 155 Let (X; �) be a topological space. A separation of X is a pair
(U; V ) of open, non-empty disjoint sets such that X = U [ V . X is said to
be connected if it has no separations. If A � X is a connected subspace if
A is connected in the subspace topology. A set that is not connected is called
disonnected.

Thus, we are led to propose that the IVT works when the codomain, R in
the above case, is connected. This is tied with completeness property of reals.
To show this, we have a long way to go.

Example 156 Consider A = (�2;�1) [ [1; 2) � R. Then A is disconnected in
the subspace topology with U = (�2;�1) and V = [1; 2)

Example 157 Let X be a set such that jXj > 1 with discrete topology. Then,
X is disconnected because U = fag and V = fagc is a separation of X for
a 2 X.

Example 158 Let (X; �) be a topological space and A = fag be a subset. Then,
A is connected in the subspace topology.

Example 159 Let (X; �) be the indiscrete topological space. Then, X is con-
nected because there is no separation of X.

Example 160 For the usual topology on R, the Q is disconected. Let r be any
irrational number and let U = Q \ (�1; r) and V = Q \ (r;1). Then, U; V
are open in the subspace topology and U [ V = Q. Also, if Y � Q with jY j > 1,
then Y is disconnected if, for a; b 2 Y and irrational r such that a < r < b, then
U = Y \ (�1; r) and V = Y \ (r;1) is a separation of Y .

Example 161 p-adic metric topology is disconnected because open balls are also
closed

Proposition 162 Let (X; �) be a topological space with jXj > 1 and let a 2 X.
If fag is the only connected set for all a, then X is disconnected.

Proof. If jXj = 2, then U = fag ; V = fbg are connected and X is not. For
arbitrary X, let U; V be open subsets of X such that X = U[V . If jU j ; jV j > 1,
then, U; V are not connected, by hypothesis. Let (U1; U2) be a separation of
U and (V1; V2) be a separation of V . Then, U1 \ U2 = ; = V1 \ V2 and so
Ui \ Vj = ; (how?) so that U \ V = ;.
Such sets are called totally disconnected.

Theorem 163 X is connected() the only, non-empty open and closed subset
of X is X itself.

50



Proof. ((= ) Let X be the only, non-empty open and closed subset of X.
Suppose that (U; V ) is a separation of X. Then, since X = U [ V and U \ V =
; =) U = V c so U is also closed, the contradiction.
(=)) If W is a proper, non-empty, open and closed subset of X, then�

W;WC
�
is a seperation.

Theorem 164 Let (X; �) be a topological space with seperation (U; V ). If A �
U , then A \ V = ;. In particular, V contains no limit points of A

Proof. A \ V 6= ; =) V is a nieghborhood for some x 2 A =) V \ A 6= ; so
that U \ V 6= ;.

Theorem 165 If (C;D) is a seperation of X and Y � X is connected, then
Y � C or Y � D.

Proof. Suppose that Y \ C 6= Y 6= Y \D. Let U = Y \ C and V = Y \D.
Then, since C;D are open in X, V;U are open in Y . Since C \ D = ; and
C [D = X, then U \ V = ;. Furthermore, U [ V = (Y \ C) [ (Y \D)
= ((Y \ C) [ Y ) \ ((Y \ C) [D)
= ((Y [ Y ) \ (C [ Y )) \ ((Y [D) \ (C [D))
= (Y \ (C [ Y )) \ ((Y [D) \X)
= Y \ (C [ Y ) \ (Y [D)
= Y , a contradiction.

Theorem 166 Let (X; �) be a connected topological space, (Y; �Y ) be a topolog-
ical space and f : X �! Y be a continuous map. Then, f (X) � Y is connected.

Proof. Let D = f (X). Suppose that (U; V ) be a separation of D. Then,
D = U [ V so that U 0 = f�1 (U) and V 0 = f�1 (V ) are open, since f is
continous, so that U 0 [ V 0 = X. These are non-empty since U and V are non-
empty since U; V � f (X). Now, suppose that x 2 U 0 \ V 0, then, f (x) 2 U and
f (x) 2 V , implying the contradiction that U and V are not disjoint. Hence U 0

and V 0 are disjoint, so that (U 0; V 0) is separation of X, a contradiction.

Theorem 167 Let fU�g�2A be a collection of connected subsets of a topological
space (X; �). If

\
�2A

U� 6= ;, then
[
�2A

U� is connected.

Proof. Let Y =
[
�2A

U� and suppose that (U; V ) is a separation of Y . Let

a 2
\
�2A

U�. With the love of God, assume that a 2 U , so each U� intersects U

so U� � U for all � 2 A =) V is empty, a contradiction.

Theorem 168 Let A be a connected subspace of X and let B � X such that
A � B � A. Then, B is connected. In particular, the closure of a connected set
is connected.
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Proof. Suppose that (U; V ) is a separation of B. Then, U � B. WLOG,
assume A � U . Then, A � U so that A � B � A � U . That is, U � B =)
B � U � B =) B � U . Thus, B = U . It must be that B = U and that
V = ;, a contradiction.
We will now prove that R is connected by showing a stronger statement:

intervals in R are connected. Recall that R has the least upper bound property.
That is, each subset A � R which is bounded above has a least upper bound.
A is said to be bounded above if 9x 2 R such that, 8y 2 A, x � y. x is a least
upper bound for A if, given any upper bound z of A, x � z. Denote the least
upper bound of A by supA.
What are all the connected subsets of R? All intervals.

Lemma 169 If a; b 2 R with a < b, then [a; b] is connected.

Proof. Assume that [a; b] is not connected. Let (U; V ) be a separation of [a; b].
In particular, U � [a; b] so U is bounded above. Let c = supU . We now claim
that c 2 U � [a; b] and c 62 U [V . Both of these together lead to a contradiction
since U [ V = [a; b]. To show that c 2 U , assume the opposite so that 9� > 0
such that (c� �; c+ �) \ U = ;. If y 2 U , then either y � c + � or y � c � �.
The �rst case is impossible since it implies that y > c and for any y 2 U but
then c is not an upper bound of U . If y � c� � for all y 2 U , then c� � is also
an upper bound for U but this means that c 6= supU , another contradiction.
Hence c 2 U . We know that U � [a; b] and, by de�nition, U � [a; b].
For the second claim that c 62 U [ V , recall that U \ V = ; =) U \ V = ;

by Theorem 164. Thus, c 62 V . Assume that c 2 U . Then, U is open =) 9�
such that (c� �; c+ �) � U , but this is a contradiction since c < c + �

2 2 U
which means that c 6= supU .

Theorem 170 Intervals in R are connected

Proof. Let I � R be an interval and suppose that (A;B) is a separation of I.
Let a 2 A and b 2 B. Then, [a; b] � I but since [a; b] is connected, we know
that either [a; b] � A or [a; b] � B but then A \B 6= ;, a contradiction.

Theorem 171 (Intermediate Value Theorem) Let X � R be a connected
subspace and let f : X �! R be continuous such that 9a; b 2 X such that
f (a) < r and f (b) > r. Then, 9c such that a < c < b and f (c) = r.

Proof. We know that f (X) is connected because f is continuous. We also know
that f (a) ; f (b) 2 f (X). Assume, for contradiction, that 8c 2 X, a � c or c � b
or f (c) 6= r. Then, r 62 f (X). Let A = f (X)\(�1; r) and B = f (X)\(r;1).
Then, A and B are open and disjoint. A is non-empty since f (a) 2 A. Similarly,
B is non-empty since f (b) 2 B. That is, f (X) is separated, a contradiction.
Hence r 2 f (X) and we have a c 2 X such that f (c) = r and a < c < b.
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6.1 Product of Connected Sets

Is RN connected? Depends on the topology. In the box topology, RN is not
connected: Let A = fbounded sequencesg and B = funbounded sequencesg.
Then, A and B are non-empty, disjoint. We only need to show that A and B are
open. Let x = (x1; x2; :::) 2 RN and let U = (x1 � 1; x1 + 1)� (x2 � 1; x2 + 1)�
:::. In the box topology, this is open (but not in product topology!). Then,
x 2 U and if x is bounded (resp. unbounded), then U consists of bounded
(resp. unbounded) sequences. Thus x is an interior point of A (resp. B). Since
x was arbitrary, therefore A (resp. B) is open.

Lemma 172 If X and Y are topological spaces and A � X and B � Y are
connected, then A�B is connected in either box or product topology.

Proof. A � B =
[
x2A

T(x;b) where T(a;b) = (fag �B) [ (A� fbg). We claim

that T(x;b) is connected for any x 2 A. Clearly, fxg � B is connected, as is
A � fbg. Also, (fxg �B) \ (A� fbg) = f(x; b)g, always, so that there is no
separation of T(x;b) so that T(x;b) is connected. For all x, T(x;b) contains (a; b)

so that A�B =
[
x2A

T(x;b).

Corollary 173 Finite product of connected sets is connected.

Theorem 174 RN is connected in product topology

Proof. 8n 2 N , let fRn = f(x1; x2; :::) : xi = 0 for i > ng. fRn is homeomorphic
to Rn via (x1; x2; :::) 7�! (x1; x2; :::; xn; 0; 0; :::). fRn is connected for each n. Let
X =

[
n2N

fRn. X is connected since each fRn is connected and they all contain
(0; 0; :::). Claim: X = RN. It is obvious that X � RN. Let x 2 RN and let U be a
neighborhood of x. In the product topology, U =

Y
i2N

Ui where Ui = R for all but

�nitely many i 2 N. Let k = max fi : Ui 6= Rg. Let p = (x1; x2; :::; xk; 0; 0; :::).
Then, p 2 fRk and p 2 U since Ui = R for i > k. So, any neighborhood U with
x 2 U intersects some fRk and hence intersects X, so x 2 X
Theorem 175 Arbitrary Cartesian Product of connected sets is connected in
the product topology/

Proof. Proof follows a pattern similar to connectedness of Rn. Let fX�; ��g�2A
be a collection of topological spaces and X =

Y
�2A

X�. Pick a 2 X. For each

�nite F � A, de�ne XF = fx 2 X : �� (x) = �� (a)8� 62 Fg. It can be shown
that XF is homeomorphic to

Y
�2F

X� and that XF is connected. Now let Y =[
F�A
jF j<1

XF . Then, each XF contains a so Y is connected. Finally, Y = X.
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6.2 Path Connected

De�nition 176 Let X be a topological space and let a; b 2 X. Then, a path
in X from a to b is a continuous function f : [c; d] �! X such that f (c) = a,
f (d) = b. X is said to be path connected if there is a path between any two
points.

Example 177 Rn is path connected. Let x; y 2 Rn. Then, we can de�ne a path
f : [0; 1] �! Rn as follows: t 7�! (1� t)x+ ty.

Example 178 N� (0) � Rn is also path connected. Let x; y 2 N� (0). Then,
we can de�ne a path f : [0; 1] �! Rn as follows: t 7�! (1� t)x + ty because
j(1� t)x+ tyj � j(1� t)xj + jtyj < (1� t) � + t� = �. N� (0) is homeomorphic
to N� (z) for any z 2 Rn so that N� (z) is also path connected. In fact, this proof
works even for lp spaces

Example 179 The sphere Sn � Rn+1 centred at the origin is also connected.
Let x; y 2 Sn and P be the plane which contains x; y. Let z 2 P \ Sn such that
x?z. Write points in P \ Sn as cos tx + sin tz. Then, 9T 2 [0; 2�] such that
y = cosTx + sinTz so that we can have a function f : [0; 1] �! Sn such that
t 7�! cos tx+ sin tz.

Example 180 Rnn fxg is path connected for n > 1. We can take x = 0 since
Rnn fxg is homeomorphic to Rnn f0g under the mapping y 7�! y�x. Then, for
any x; y, we can have a path between ex = x

jxj and ey = y
jyj as above.

Theorem 181 If X is path connected, then X is connected.

Proof. Assume that X is not connected, so that we have a separation (U; V ).
Let a 2 U and b 2 V . Since X is path connected, 9f : [c; d] �! X such that
f (c) = a, f (d) = b. However, f ([c; d]) is connected so that either f ([c; d]) � U
or f ([c; d]) � V , but then b 2 U or a 2 V . In either case, U \ V 6= ;, a
contradiction.
The converse doesn�t follow:

Example 182 Let I = [0; 1], X = I � I with order topology. X is connected in
the usual topology. X is also connected in the product topology. Let (U; V ) be a
seperation of X. Then..?
However, X is not path connected. Suppose that X is path connected. Let

p = (0; 0) and q = (1; 1). Since X is assumed to be path connected, there
is a path f : [a; b] �! X connecting p and q. Note that f (a) = (0; 0) and
f (b) = (1; 1) by de�nition of path and that (0; 0) < (1; 1). Thus, f (a) < f (b).
Now let d 2 X. Then, p � d � q. Hence 9c 2 [a; b] such that f (c) = d by
IVT. That is, f is surjective. Now let x 2 I and Vx = f(x; y) : y 2 Ig is an
interval in X and is open. Thus, Ux = f�1 (Vx) is open in [a; b] : If y 6= x, then
Vx \ Vy is disjoint and so is Ux \ Uy. Now for each x 2 I, pick an element
rx 2 Ux \Q. Thus, we can have a well-de�ned function F : I �! Q de�ned by
f (x) = rx. F is injective: f (x) = f (y) =) rx = ry. Since rx 2 Ux \ Q and
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ry 2 Uy \ Q and Ux \ Uy = ; for all distinct x; y, then rx = ry =) x = y.
Since F is an injection, we have a copy of an uncountable set in a countable
set, a contradiction.

Existence of paths is transitive: if f : [a; b] �! X be a path between x and
y and g : [c; d] �! X be another path between y and z. That is, f (a) = x,
f (b) = y = g (c) and g (d) = z. Then, replace g with eg : [b; d0 = d+ b� c] �!
X. Then, eg (x) = g (x� b+ c). We can now concatenate f and g as follows:eg � f = f (x) if x 2 [a; b] and = eg (x) if x 2 [b; d].
InTheorem 168, we�ve seen that the closure of a connected set is connected.

However, the same doesn�t hold for path connectedness:

Example 183 Topologist�s sine curve: S =
��
x; sin 1

x

�
: x 2 (0; 1]

	
, the graph

of h (x) = sin
�
1
x

�
. S is path connected since between any two points x; y in S, we

can de�ne a continuous function by simply taking the restriction of h to those two
points. Since S is path connected, it is connected. Take S, which is connected
because S is connected. Note that S = S [ V for V = f(0; y) : y 2 [�1; 1]g.
However, S is not path connected because we can�t �nd a point from the vertical
axis V to the curve. Assume that we have a path f : [a; b] �! S with f (a) =
(0; 0) and f (b) = q 2 S. V is a closed set in S so that f�1 (V ) � [a; b] is
also closed. Then, sup f�1 (V ) = c 2 f�1 (V ). Now form g : [c; b] �! S
a path where every point other than c maps into S. This is like taking just
the last point where the original function f meets V . WLOG, assume that
[c; b] = [0; 1]. Now let f (t) = (x (t) ; y (t)) with x (0) = 0, x (t) > 0 for t > 0 and
y (t) = sin 1

x(t) if t > 0. The idea now is to �nd a sequence tn �! 0 but that

f (tn) does not converge to f (0). For each n, choose u so that 0 < u < x
�
1
n

�
and sin 1

u = (�1)n. We know that x (t) is continuous so that by IVT, we can
pick tn 2

�
0; 1n

�
such that x (tn) = u. Notice that tn �! 0 but that f (tn) =

(x (tn) ; y (tn)) = (x (tn) ; (�1)n) does not converge.

6.3 Connected Components

Let X be a topological space. There is a relation on X given by a � b if 9 a
connected A � X such that a; b 2 A. � is an equivalence relation.
Proof. � is symmetric: Let x 2 X. Consider the subset fxg � X. Equip this
with the subspace topology. Then, the subspace topology for this singleton is
indiscrete and, therefore, the only non-empty open and closed subset of fxg is
fxg itself. Hence fxg is a connected subspace of X. Thus, x � x.
� is re�exive: For x; y 2 X, let x � y. Then, there exists a connected

subspace A � X such that x; y 2 A. That is, there exists a connected subspace
A � X such that y; x 2 A =) y � x
� is transitive: For x; y; z 2 X let x � y and y � z. Then, there exist

connected subspaces A;B � X such that x; y 2 A and y; z 2 B. Since y 2 A\B,
then A \B 6= ; so that A [B is a connected subspace of X, containing x; y; z.
Thus x � z
Thus, if X is connected, there is a single equivalence class.
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De�nition 184 The equivalence classes of � are called connected compo-
nents of X.

Theorem 185 The connected components of X are disjoint, connected subsets
of X whose union is all of X. Furthermore, each non-empty connected subset
of X is contained in a unique connected component.

Proof. First part is obvious, considering that the equivalence class forms a
partition. To show that the connected components are connected, let A be a
connected component. Let (U; V ) be a separation of A. Let a 2 U and b 2 V .
Since a; b 2 A, there exists connected C � X such that a; b 2 C. Then, C � U
or C � V but then b 2 U or a 2 V , a contradiction to the fact that U \ V = ;.
If B is a connected, non-empty subset and b 2 B, then b intersects the

connected component containing b but since B is connected, then B must be
contained in this component.

Theorem 186 Let (X; �) be a topological space. Then,

1. The connected components are closed.

2. If there are �nitely many components, then the union of the components
is closed, as well.

3. If there are �nitely many components, then the components are also open.

Proof. (1) Let U be a component. Then, U is connected and so is U . The
latter lives in some component and that component certainly has to be U . Thus,
U = U
(2) Let Q be the union of the connected components other than U , so Q is

a union of �nitely many closed sets and hence Q is closed.
(3) Proof?

Example 187 X = [�1; 0)[(0; 1]. The connected components are U1 = [�1; 0)
and U2 = (0; 1], which are both open and closed in the subspace topology.

Example 188 Let Q have the subspace topology of R. The connected compo-
nents are singletons, which are closed but not open: let U � R be an open subset.
Then, U contains in�nitely many rationals.

6.4 Path Components

De�nition 189 Let (X; �) be a topological space. Then, there is another equiv-
alence relation � on X where x � y () if there is a path in X between x and
y. The equivalence classes of � are called path components.

Theorem 190 Let (X; �) be a topological space. The path connected compo-
nents of X are disjoint, connected subsets of X whose union is all of X. Fur-
thermore, each non-empty path connected subset of X is contained in a unique
connected component.
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Proof. Since path connectedness implies connectedness, then every path con-
nected component is a connected component. Hence the theorem holds.

Example 191 In Example 183, S is connected but not path connected and
S and V are the path components of S. Also, S is open but not closed. V is
closed but not open. Thus, path components are neither guaranteed to be open
nor closed, even in the �nite case.

6.5 Local and Path Connectivity

De�nition 192 Let (X; �) be a topological space and let y 2 X. X is said to
be locally connected at y if for every neighborhood U of y, 9 a connected open
set y 2 V � U . X is locally connected if it is locally connected at each point.

De�nition 193 Let (X; �) be a topological space and let y 2 X. X is said to be
path connected at y if for every neighborhood U containing y, 9 a path connected
open set y 2 V � U . X is path connected if it is path connected at each point.

Example 194 The Sine Curve, at the origin (isn�t the sine curve unde-
�ned at the orgin?), is connected but not locally connected.

Example 195 X = [�1; 0) [ (0; 1]. Then, X is not connected but is locally
connected.

The above examples show that connected and locally connected do not have
any logical connection.

Example 196 Let S be the topologist sine curve union and I � R2 be any open
set far away from S. Then, S [ I is neither connected nor locally connected

Theorem 197 X is locally connected if and only if for each open set U in X,
every component of U is open. In particular, every component is open.

Proof. Suppose that X is locally connected and let U � X be open. Let
y 2 U and C be a component of U that contains y. We need to show that C
is open. By local connectedness, we know that 9 a connected, open V and so
that y 2 V � U but since V is connected, we must have y 2 V � C so that
y 2 Int (C). Since y was arbitrary, C is open.
Conversely, let y 2 X and let components of open sets be open. Let U � X

be an open set with y 2 U . Then, y is contained in some component C � U but
C is open and connected so X is locally connected at y. Since y was arbitrary,
X is locally connected.

Remark 198 The same theorem is true for path components.

Theorem 199 Let (X; �) be a topological space. Then, each path component
lies in a unique component of X. Furthermore, if X is locally path connected.
Then, the path components and the components are the same.
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Proof. Let P � X be a path component. Then, P is path connected and
hence connected. So, there is a component C � X such that P � C. Since X is
locally path connected, P is open. Let Q be the union of all path components
intersecting C other than P . Then, Q is a union of path components and is
hence open, showing that Q is open and CnQ = P is closed. Thus, P is a
non-empty clopen set and so P = C.

Corollary 200 If X is locally path connected, then X is connected () X is
path connected.

In summary, path components and components are di¤erent in sine curve.

7 Compact Spaces

7.1 Compactness in Topological Spaces

A topological space is compact if it is well-approximated by �nite sets. In formal
speak, a let X be a topological space and let C be a collection of open subsets.
If X =

[
A2C

A, then C is called an open cover of X. X is said to be compact if

each open cover contains a �nite subcollection that is also a cover. Colloquially,
every cover has a �nite subcover.

Example 201 Any �nite set with any topology is compact. Let X = fx1; x2; :::xng
and let C be an open cover. Then, for each i 2 f1; :::; ng, 9xi 2 Ui 2 C so
fU1; :::; Ung is a �nite subcover.

Example 202 If X is any set with indiscrete topology, then C = fXg is the
only open cover, which is already �nite. Any discrete topology is �nite if and
only if the underlying set is �nite. We�ve already shown that if a set is �nite
with the discrete topology, then it is compact. To show the converse, let jXj =1
and C = ffxg : x 2 Xg. This is a cover and has no proper subcover.

Example 203 Let A =
�
1
n : n 2 N

	
[ f0g � R be a sequence. Let C be a

cover of A. Then 9U 2 C such that 0 2 U but we know that 1
n �! 0 so that

9N 2 N so that if n � N , then 1
n 2 U . In�nitely many points are now placed

in a single set. For the remaining �nite points 1 � m < n, 9Um 2 C such that
1
m 2 Um because C is a cover. Hence the subcollection fU;U1; U2; :::; UN�1; Ug
is a subcover.

This argument works even for non-Hausdor¤ spaces!
R is not compact. Let C = f(n; n+ 2) : n 2 Zg. Removing a single interval

will miss a real number, causing the subcollection to not be a cover.
(0; 1) is not compact because it is homeomorphic to R and compactness is a

topological property.
(0; 1] is also not compact. Let C =

��
1
n ; 1
�
: n 2 N

	
be an open cover.

Assume it has a subcover, C 0. Then, there is a largest m so that
�
1
m ; 1

�
. It is

easy to see that 1
2m is not in any U 2 C 0.
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Theorem 204 If a < b are real numbers, then [a; b] is compact.

The proof will proceed as follows: we will �rst let C be a cover of [a; b] and
then create a set

D = fy 2 (a; b] : [a; y] is covered by �nitely many elements of Cg

Then, for d = supD, we will show that d = b.
Proof. Claim: D 6= ;. Choose U 2 C so that a 2 U . Since U is open,
9z 2 (a; b) such that [a; z] � U . Then, [a; z] is covered by a single element of
C so that z 2 D. Now we can de�ne the supremum. Let d = supD. We �rst
show that d 2 D. Choose V 2 C such that d 2 V . Since V is open, then V
contains an interval (c; d] where c 2 [a; d). Assume that c 62 D. Then, there
is a z 2 (c; d) \ D (what?) otherwise d 6= supD. Since z 2 D, [a; z] can be
covered by �nitely many elements fC1; :::; Cng of C and so [a; d] is covered by
fC1; :::; Cn; V g
Finally, we need to show that d = b. d > b is false, otherwise d 6= supD.

Assume d < b. Arguing as above, we can �nd y so that d < y � b so that [d; y]
is contained in a single element U 2 C. Since d 2 D, then [a; d] is covered by
�nitely may elements fC 01; :::; C 0ng of C and so [a; y] is covered by fC 01; :::; C 0n; Ug
but this contradicts that d = supD. Hence d = b and [a; b] is covered by �nitely
many elements of C and hence compact.

Theorem 205 If X is compact and A � X is closed. Then A is also compact.

Proof. Let C be a cover of A. Since A is closed, XnA is open and so C 0 =
C [ fXnAg is a cover of X. Since X is compact, we have a �nite subcover
B of X. We now show that B [ fXnAg is a �nite cover of A. If a 2 A, then
a 2 U 2 C 0. Then, U 2 C or U = XnA. If U = XnA, a 2 XnA, a contradiction.
Thus, U 2 C so that 9U 0 2 B such that a 2 U 0.

Theorem 206 If X is a Hausdor¤ topological space and A � X is compact,
then A is closed.

Proof. Let y 2 XnA. For each a 2 A, there exists disjoint nbds Ua and Va
with y 2 Ua and a 2 Va. Let C = fVa : a 2 Ag. This is a cover for A. Since A
is compact, C has a �nite subcover. C 0 = fVa1 ; Va2 ; :::; Vang. Then, V =

[
�2C0

�

is open, contains A and is disjoint from U = Ua1 \Ua2 \ :::\Uan . Each set here
is open and contains y so that U is open and contains y and U � XnA. Hence
y is an interior point of XnA. y was arbitrary. Therefore, XnA is open or that
A is closed.

Corollary 207 If Y is a compact subspace of a Hausdor¤ space X and a 2
XnY . Then, there are disjoint open sets U and V so that a 2 U and Y � V .

Theorem 208 Let (X; �X) be a compact topological space and f : X �! Y be
continuous. Then, f (X) is compact
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Proof. Let C be a cover of A = f (X). Let C 0 =
�
f�1 (U) : U 2 C

	
. It is easy

to see that C 0 is an open cover ofX. SinceX is compact, C 0 has a �nite subcover
C 00 = fV1; :::; Vng : For each Vi 2 C 00, 9Ui 2 C such that V1 = f�1 (Ui). We now
show that fU1; :::; Ung is a �nite subcover. It is clearly �nite and a collection
of open sets. To show that it is a cover, let d 2 A. Then, 9e 2 X such that
f (e) = d. That is, 9i 2 f1; :::; ng so that e 2 Vi. Thus, d 2 Ui.

Theorem 209 Let X be compact and Y be Hausdor¤. If f : X �! Y is a
continuous bijection, then f is a homeomorphism.

Proof. Let g = f�1. We need to show that g is continuous by showing that
preimages of closed sets are closed. Let A � X be a closed set. Then, A is
compact. Since f is a bijection, g�1 (A) = f (A). Since f is continuous, f (A)
is also compact. However, Y is Hausdor¤. So, f (A) = g�1 (A) is closed.

Lemma 210 (Tube Lemma) If X and Y are compact and N � X �Y is an
open set that contains fag�Y for some a 2 X. Then, there exists neighborhood
W of a such that W � Y � N .

Proof. Ya = fag � Y is homeomorphic to Y and hence compact. Let p 2
Ya. Then, p = (a; y) for some y 2 Y . Pick Up � X and Vp � Y so that
p 2 Up � Vp � N . Let C = fUp � Vp : p 2 Yag. This is an open cover of
Ya so has a �nite subcover fUp1 � Vp1 ; :::; Upn � Vpng. WLOG, assume that

a 2 Upi for every i 2 f1; :::ng. Let W =
n\
i=1

Upi . Then, W � Y � N because

W � Y =
n[
i=1

W � Vpi and W � Vpi � Upi � Vpi � N

Theorem 211 (Weak Tychono¤�s Theorem) Let X and Y be compact. Then,
X � Y is compact.

Proof. Let C be a cover of X � Y and let a 2 X. Then, Ya is compact and so

Ya is covered by �nitely many elements fA1; :::; Ang of C. Let N =

n[
i=1

Ai be an

open set that contains Ya. By Tube Lemma, 9Wa � X such thatWa�Y � N so
thatWa is covered by �nitely many elements of C. The collection fWa : a 2 Xg
is an open cover of X and so has a �nite subcover, say fW1; :::;Wng. We can

write X �Y =
n[
i=1

Wi�Y . Each Wi�Y is covered by �nitely many elements of

C and so C has a �nite subcover.

Corollary 212 If Xi is compact for 1 � i � n, then X1 � :::�Xn is compact.

De�nition 213 Let (X; d) be a metric space. A set A � X is bounded if
9y 2 X and r 2 R such that A � Nr (y)
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Boundedness is a metric property! And crucially depends on metric. To say
that for A � Rn, A is bounded in some lp metric is equivalent to saying that
A is bounded in any lp metric. This can be proved using the fact that for any
p � 1, there exists a real cp such that 1

cp
dp (x; y) � d2 (x; y) � cpdp (x; y)

Theorem 214 (Heine-Borel Theorem) A � Rn is compact if and only if A
is closed and bounded in some lp metric for p � 1.

Proof. ( =) ) Suppose that A � Rn is compact. Rn is Hausdor¤ so A is closed.
Consider the collection fNn (0) : n 2 Ng. Then, this is a cover of Rn and hence
covers A. There exists m 2 N such that fN1 (0) ; :::; Nm (0)g is a cover of A and
that A � Nm (0). Hence A is bounded.
((= ) If A is bounded, 9x 2 Rn, r 2 R such that A � Nr (x). Observe

that if y 2 A, then d (0; y) � d (0; x) + d (x; y) � d (0; x) + r = r0, say. Hence
A � Nr0 (0). Note that Nr0 (0) � [�r0; r0]n = Q, say. By weak Tychono¤
theorem, Q is compact and A � Q is closed and so A is compact.

Theorem 215 (Extreme Value Theorem) Let f : X �! R be continuous.
If X is compact, then 9c; d 2 X such that f (c) � f (x) � f (d) for any x 2 X.

Proof. We know that f (X) � R is compact and hence closed and bounded.
Let M = sup f (X) and m = inf f (X). Since f (X) is closed, M;m 2 f (X)
hence there exists c; d such that f (c) = m � f (x) � f (d) = M for any x 2 X

There is another de�nition of compactness:

De�nition 216 Let C be a collection of subsets of a set X. Then, C has the �-
nite intersection property (FIP) if for each �nite subcollection fC1; :::; Cng �

C,
n\
i=1

Ci 6= ;

This de�nition does not require X to be a topological space

Theorem 217 Let X be a compact space. Then, X is compact i¤ every collec-
tion of closed subsets of X with FIP has the property that

\
D2C

D 6= ;

Proof. A is collection of open sets of X i¤ C = fXnU : U 2 Ag is a collection
of closed subsets of X. A is a cover i¤

\
U2C

U = ?. Next, a �nite subcollection

fA1; :::; Ang � A is a subcover i¤
n\
i=1

XnAi 6= ;. Finally, a collection of closed

sets has the FIP i¤ the corresponding open sets contains no �nite cover.

Theorem 218 (Tychono¤�s Theorem) If fX�g�2A be a collection of com-
pact topological spaces, then

Y
�2A

X� is compact in product topology.
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The proof of this fact uses Zorn�s lemma (if every chain in a poset P has an
upper bound, then P has a maximal element)
Consider the following doomed proof: We need to show that X =

Y
�2A

X� is

compact. Let C be a collection of closed sets with FIP. For each � 2 A, de�ne
C� =

n
�� (D) : D 2 C

o
. This is a collection of closed sets in X�. It is easy to

check that D� has the FIP. Since X� is compact for each �, there is x 2
\

D2C�

D.

Let x = (x�)�2A with �� (x) = x�. However, x 62
\
D2C

D. Say X = [0; 1]� [0; 1].

Let p = (x1; y1) and q = (x2; y2). C be the collection of closed ellipses ith foci
p and q.
To prove Tychono¤�s theorem, we will use the following lemma:

Lemma 219 Let X be a set and let C be a collection of non-empty sets with
FIP. Then, there is a collection of non-empty set D such that

1. C � D

2. D has the FIP

3. D  E =) then E does not FIP

Proof. Let C� be a collection of collection of non-empty subsets of X that
contain C and have the FIP. Then, C� is partially ordered by inclusion. Suppose
B� � C� is a chain and let A =

[
b2B�

b. Then, any b 2 B� is a subset of A.

Clearly, C � A since C � b for any b 2 B�. We claim that A has the �nite
intersection property. Let f�1; :::; �ng be a �nite subcollection of A. For each
1 � i � n, there is a collection bi 2 B� such that �i 2 bi. Then, fb1; :::; bng �
B�. WLOG, we can assume that fb1; :::; bng is ordered in a way such that
bi � bi+1 and so bn is a maximal element of fb1; :::; bng so that �i 2 bn for
1 � i � n. So, f�1; :::; �ng is a �nite subcollection of bn 2 B� � C� so
n\
i=1

�i 6= ;. So, A has the FIP and so A 2 C� so all chains have an upper

bound. By Zorn�s lemma, C� has a maximal element in D. We can then use
the following:

Lemma 220 Let X be a set and let C be a collection of non-empty subsets with
FIP and let D be the maximal FIP collection containing C. Then,

1. Any �nite intersection of elements of D is in D

2. If A � X and A intersects each element of D, then A 2 D

Proof. Let fD1; :::; Dng be a �nite subcollection of D and let B =
n\
i=1

Di.

Since D has FIP, B 6= ;. Let E = D [ fBg. Let fE1; :::; Ekg be a �nite
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subcollection of E such that
k\
i=1

Ei = ;. Then, B 2 fE1; :::; Ekg for other-

wise, if B 62 fE1; :::; Ekg, then
k\
i=1

Di = ;. WLOG, assume that B = Ek and

Ej 6= B for j < k. Then,
k\
i=1

Ei =
k�1\
i=1

Ei \ B =
k�1\
i=1

Ei \
n\
i=1

Di but since

fE1; :::; Ek�1; D1; ::::; Dng is a �nite subcollection of D and so,
k\
i=1

Ei 6= ;, a

contradiction.
For 2, let F = D [ fAg. Let fF1; :::; Fng be a �nite subcollection of F such

that
n\
i=1

Fi. Again, A 2 fF1; :::; Fng (see above) so that WLOG A = Fn and

Fi 6= A for i < n. Then,
n\
i=1

Fi =

n�1\
i=1

Fi \A 6= ;, a contradiction.

And now, for the proof of Tychono¤�s theorem
Proof. Let X =

Y
�2A

X� and let C be a collection of non-empty subsets with

FIP. We will prove that
\

2C


 6= ;. Let D be the maximal FIP collection

containing C. We will show that ; 6=
\

2D


 �
\

2C


. Let � 2 A and �� : X �!

X� and consider the collection D� = f�� (�) : � 2 Dg. Then, D� has FIP since
D does. Since X� is compact, we can choose X� 2

\
�2D�

�. Let x = (x�)�2A.

We claim that x 2
\
�2D

�. Let B0 =
�
��1� (U�) : U� � X� is open

	
. Then, B0 is

a subbase for the product space. Let B be the standard basis for the product
topology. Let � 2 D and let V = ��1� (U�) be an element of B that contains X.
Then, UB is a neighborhood of x� = �� (x). By construction, x� 2 �� (�) and
UB intersects �� (�) in an element of form �� (y) where y 2 �. Thus, y 2 V \ �.
In other words, every element of B0 that contains x intersects every element of �
so V 2 D. By previou lemma, every element of B that intersects x is contained
in D.
Let W be a basis element containing X. Then, W 2 D and so fW; �g � D

and by FIP, W \ � 6= ; and x 2 � for all �.

7.2 Compactness in Metric Spaces

Lemma 221 (Lebesgue Number Lemma) Let (X; d) be a compact metric
space and let C be an open cover. Then, 9� > 0 such that if U � X is an open
set of diameter< �, then 9V 2 C such that U � V .
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Such a � is called a Lebesgue Number of C (how is this unique to each
C?)
Proof. Since X is compact, we can �nd a �nite subcover fC1; :::; Cng. Let
� = diam (C1). Let Ai = X � Ci.
We will look at the average distance to Ai. De�ne f : X �! R with f (x) =

1
n

nX
i=1

d (x;Ai). For each i, 9ai 2 A such that d (x;Ai) = inf fd (x; a) : a 2 Aig =

d (x; ai). This function is continuous: to show this, we need to show that x 7�!
d (x;Ai) is continuous. Let � > 0. Let y 2 N� (x). Then,

d (y;Ai) � d (y; ai)

� d (y; x) + d (x; ai)

= d (y; x) + d (x;Ai)

< �+ d (x;Ai)

so that jd (x;Ai)� d (y;Ai)j < � = �0. Thus, x 7�! d (x;Ai) is continuous.
Therefore, f (x) is continuous. Also, f (x) > 0 for all x. Since X is compact,
by extreme value theorem, 9� > 0 such that f (x) � � > 0. We show that this
is the Lebesgue number of C. Assume that diam (U) < �. Let x 2 U so that
U � N� (x). Also, f (x) � � so that there exists i, with 1 � i � n such that
� < f (x) � d (x;Ai) and so U � N� (x) � Ci.

Theorem 222 Let (X; dX) and (Y; dY ) be metric spaces and let f : X �! Y
be a function. Assume that (X; dX) is compact. Then, f is continuous if and
only if f is uniformly continuous.

Proof. ( =) ) Let f be continuous, � > 0 and C 0 =
�
N �

2
(y) : y 2 Y

	
. Then, C 0

is a cover of y so that C =
�
f�1 (U) : U 2 C 0

	
is an open cover of X. Let � > 0

be a Lebesgue number of C. If dX (x1; x2) < �, then fx1; x2g has diameter< �
so that 9V 2 C so that fx1; x2g � U but f (V ) = N �

2
(y) for some y 2 Y and

dY (f (x1) ; y) and dY (f (x2) ; y) < �=2 so that dY (f (x1) ; f (x2)) < �.
((= ) Trivial

Theorem 223 Let (X; �) be a compact topological space space and let A � X
such that jAj =1. Then, A has a limit point.

Proof. Assume that A has no limit point. For each x 2 X, there exists
a neighborhood Ux of x such that Ux \ (An fxg) = ;. Let C = fUx : x 2 Xg.
Then, C is a cover ofX so that we can have a �nite subcover fUx1 ; Ux2 ; ::::; Uxng.
Since jAj =1, we can have an i with 1 � i � n such that jA \ Uxi j =1 (why
does this not work for the �nite case?) but this contradicts the assumption
that Uxi \ (An fxig) = ;.

De�nition 224 A topological space is limit point compact if every in�nite
subset has a limit point.

Thus, by above, a compact metric space is limit point compact.
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De�nition 225 Let (X; �) be a compact topological space. X is said to be
sequentially compact if every sequence in X has a convergent subsequence.

Theorem 226 If X is �rst countable topological space, then limit point com-
pactness implies sequential compactness.

Proof. Let fxig be a sequence and let A = fxi : i 2 Ng. There are two cases.
If jAj < 1, then pick a constant subsequence. If jAj = 1, then by limit point
compactness, A has a limit point x. Let fUig1i=1 be a countable base at x.
Assume that Ui+1 � Ui. Let i1 = 1 and for j > 1, let ij be such that ij � ij�1
and such that xij 2 Uj .
We claim that xij �! x. Let U be a nieghborhood of x. Then, 9j 2 N so

that Uj � U but by construction, xik 2 Uj � U if k � j.
Thus, compactness =) limit point compact =) sequentially compact (if

space if �rst countable).

Theorem 227 Let (X; d) be a metric space. If X is sequentially compact, then
every open cover of X has a �nite subcover.

Proof. Assume that X is sequentially compact. We will prove that X satis�es
the (a) Lebesgue number lemma and (b) show that for any � > 0, X can be
covered by �nitely many �-balls. This would prove that X is compact because
if we let C be a cover of X, � > 0 be a Lebesgue number for C and let � =
�=3. There is a �nite cover by �-balls fN� (x1) ; :::; N� (xk)g. Each N� (xi) has
diameter 23� < � so thatN� (xi) � Ci 2 C so that fC1; :::; Ckg is a �nite subcover
For both of the assertions (a) and (b), we will work by proof by contradiction.
For (a), suppose that there is a cover C with no Lebesgue number. Thus,

there is a sequence fCng of sets not in C with diam (Cn) < 1
n so that Ci is not

contained in any set of C. Let xn 2 Cn and then fxng is a sequence and hence
has a convergent subsequence by hypothesis fxnig such that xni �! x so that
x 2 U for some U 2 C. U is open so we can choose � > 0 such that N� (x) � U .
Assume that i is su¢ ciently large such that 1

ni
< �=2 and d (xni ; x) < �=2.

Then, if y 2 Cni , then d (y; x) � d (y; xni) + d (xni ; x) � 1
ni
+ �

2 < � so that
Cni � N� (x) � U . This contradicts choise of fCng (we know that every body
has a Lebesgue number)
For (b), assume that 9� > 0 such that X cannot be covered by �nitely

many �-balls. Pick x1 2 X. Then, N� (x1) does not cover X so we can pick

x2 2 XnN� (x1). By induction, pick xn+1 2 Xn
 

n[
i=1

N� (xi)

!
so we can have

a sequence fxig. We now show that fxig has no convergent subsequence. Let
x 2 X. What if x is a limit of some subsequence of fxig? Let U = N �

2
(x).

By construction, d (xi; xj) � � if i 6= j so if xi 2 N �
2
(x), then xj 62 N �

2
(x)

(otherwise d (xi; xj) � d (xi; x) + d (x; xj) < �), a contradiction.
Thus, for a metric space, the notions of compactness, limit point compactness

and sequential compactness are all equivalent.
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7.3 Local Compactness

Not all spaces are compact. Sometimes we can embed a non-compact space in
a nice compact space.

De�nition 228 Let (X; �) be a topological space and a 2 X. X is said to be
locally compact at a if there exists a nieghborhood U of a and a compact set C
such that U � C. X is locally compact if it locally compact at every point in X.

The following is a motivational example.

Theorem 229 (Bolzano-Weirstrass) Every bounded sequence in Rn has a
convergent subsequence:

Proof. We can embed R into S1 by stereographic projection �. This map is
continuous. Then, � (R) = S1n fNg is homeomorphic to R. Suppose we have a
bounded subsequence fxig in R, with fxig bounded by R. Then f� (xi)g lives
in the closed set � ([�R;R]).

Example 230 Every compact space is locally compact.

Example 231 R is locally compact because 8r 2 R, (r � �; r + �) � [r � �; r + �]

Example 232 Rn is locally compact since 8r 2 Rn, r 2 N� (r) � N� (r)

Example 233 If X has the discrete topology, then X is locally compact because
for all a 2 X, a 2 fxg � fxg.

Example 234 Q is not locally compact: for a 2 Q, let U be a nieghborhood of
a. Then, U = Q \ I for some open interval I in R. Suppose that U � C where
C is compact in Q, so C is also compact in R. So, C is closed in R. Then, C
has to contain irrational elements, which is a contradiction.

What this says is that there aren�t enough compact sets in Q.. though there
still are a lot.

Problem 235 What are the compact subsets of Q?

Solution 236 Clearly, all �nite sets F = fq : q 2 Qg are compact. Let K0 be
the collection of all �nite subsets of Q. Note that every �nite union of members
of K0 is in K0. This is our �rst collection and already countably in�nite.
Let q be any rational number and fqng1n=1 be a sequence of rational numbers

such that qn ! q. Then, X = fqn : n 2 Ng [ fqg is compact because by con-
struction, every sequence in X has a convergent subsequence. There are various
ways in which one could approach a rational number e.g., from left and right.
Additionally, another possibility is, say for q = 1, then qn = 1+ k

n ! 1 for each
k 2 Q. Thus, for each q, there are possibly countably in�nitely many ways in
which we can have X. Let K1 be the collection of all such X for each q. This
is our second collection and again countably in�nite.
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Since the �nite union of compact sets is compact, then F [
m[
j=1

Xj is compact

for each F 2 K0 and Xj 2 K1. Let K2 be the collection of �nite unions of
elements of K1 and K0. This is our third collection of compact subsets of Q.
Again, K2 is countably in�nite.
Now, for Y 2 K2, for a �xed n and each qn 2 Y , let fpmg1m=1 be a sequence

of rational numbers such that lim
m!1

pm = qn. Let Z = fpm : m 2 Ng [ fqng.
By construction, Z is compact. Essentially, for each member of the sequence
fqng1n=1, we are letting fpmg

1
m=1 be a sequence such that limm!1

pm = qn. Let K3

be the collection of all such sets.
We can continue this way by adding more and more countably in�nite col-

lections of compacts subsets of Q.
To show that the collection K = fK0;K1; :::g consists of all compact subsets

of Q, assume 9 compact subset C of Q such that C 6= Ki for all i. Note that
Ki � Ki+1 by construction. Hence each subset of K is a chain and is bounded
above by the union of all elements of the chain. By Zorn�s lemma, K has a

maximal element, say C 0 =
1[
i=0

Ki 2 K. By Zorn�s Lemma, C 0 is compact.

Since C is compact, then C 0 [C is compact. Also, C 0 � C 0 [C, a contradiction
to the maximality of C 0. Hence there does not exists such a C.

Theorem 237 (Characterization of Locally Compact Hausdor¤ Spaces)
Let (X; �) be a topological space and a 2 X. Then, X is locally compact and
Haudsor¤ if and only if there is a topological space Y such that

1. X is a subspace of Y

2. jY nXj = 1

3. Y is compact, Hausdor¤

Furthermore, if Y and Y 0 are two spaces satisfying 1 � 3, then there is a
homeomorphism h : Y �! Y 0 such that h (x) = x for all x 2 X

Proof. ( =) )
We will �rst prove uniqueness upto homeomorphism. Let Y; Y 0 be spaces

satisfying 1�3. Let Y nX = f1g and Y 0nX = f10g. De�ne h : Y �! Y 0 given
by

h (x) =

�
x if x 2 X
10 if x =1

Then, h is bijective. If U � Y is open, then h (U) � Y 0 is open. By symmetry,
h�1 is also an open map. So we simply need to prove that h (U) is open in
Y 0 for open U . If 1 62 U , then clearly h (U) is open. If 1 2 U , then let
C = Y nU . This set closed, a subset of a compact space Y and therefore compact.
Thus, h (C) = C is compact. Since Y 0 is Hausdor¤, C is closed in Y 0 and so
h (U) = Y 0nC and is open.
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Now, let Y = X [ f1g. Then, 2 holds and X is a subset of Y . Let
�1 = fU : U is open in Xg and �2 = fY nC : C is compact in Xg. Then, �1[�2
is a compact topological space on Y : ; is open in X so that ; 2 �1 and ; is
compact in X so that Y 2 �2. For intersection, there are three cases. If both
open sets are open in X, then their intersection is clearly in �1. If both open
sets are in �2, then U1 = Y nC1 and U2 = Y nC2 for some compact sets C1,
C2 in X. Then, U1 \ U2 = Y n (C1 [ C2) 2 �2. If U1 2 �1 and U2 2 �2, then
U2 = Y nC2 and U1 \ U2 = XnC2 which is open because C2 is closed since X is
Hausdor¤. Finally, let fU�g�2A be a collection of elements in � . If A = B t C
where U� 2 �1 is � 2 B and U� 2 �2 is � 2 C. For each � 2 C, 9C� compact
in X so that U� = Y nC� so that

[
�2A

U� =
[
�2B

U� [
[
�2C

U�

=
[
�2B

U� [
[
�2C

(Y nC�)

=
[
�2B

U� [
 
Y n

\
�2C

C�

!
= U [ (Y nC) = Y n (CnU). This is open because CnU is closed because it is

compact.
To show 1, we need to check that U � X () U = V \ X for V 2 � . If

V 2 �1, then V \X = V is open in X. If V 2 �2, then V = Y nC for C compact
in X. Then, X \ (Y nC) = XnC where C is closed and so XnC is open in X.
Let A be an open cover of Y . There is at least 1 set U1 = Y nC for C compact

in X. Let A1 = AnfU1g. Then, A1 is an open cover of C but C is compact
and so it can be covered by �nitely many sets of the form fD \X : D 2 Aig.
The corresponding sets in A1, along with U1, are a cover of Y .
Let x; y be distinct points in Y . If x; y 2 X, then we can separate them since

X is Hausdor¤. If y =1. Then pick a niehgborhood U of x and a compact C
in X such that x 2 U � C and V = Y nC. Then, U; V seperate x and 1.
((= ) Assume that Y exists for X and 1 � 3 holds. Then, X is Hausdor¤

because a subspace of a Hausdor¤ space is Hausdor¤. Also, it is locally compact
because for x 2 X, we can �nd disjoint neighborhoods U; V of x and 1 so
V = Y nC where C is compact in X and x 2 U � C.

8 Countability and Separability Axioms

As a motivation, recall that metric spaces have many nice properties: they are
�rst countable and Hausdor¤, for instance. However, not all topological spaces
are metric spaces. So, if we are given a topological space, how can we tell that
it is a metric space? Another way to ask this question is to determine which
sets in a topological space can be distinguished by continuous functions: let
A;B � X be disjoint subsets of A. Is there a continuous function f : X �! R
such that f (x) = 0 for all x 2 A and f (x) = 1 if x = B. Not in general, there
isn�t. Consider A = (0; 1) and B = (1; 2) and xn = 1� 1

n and yn = 1+
1
n . Then,

f (xn) ! 1 and f (yn) ! 1 but xn 2 A and yn 2 B. Should we require A and
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B to be closed? Then the function f (x) = d(x;A)
d(x;A)+d(x;B) works: since A and B

are disjoint, the denominator is never zero. If x 2 A, then f (x) = 0 whereas if
x 2 B, then f (x) = 1.

8.1 Countability Properties

Recall the following for (X; �) a topological space:

1. X is �rst countable if X has a countable local base at each point

2. X is second countable if X has a countable basis.

For example, for any n 2 N, Rn is both �rst and second countable. On the
other hand, think about RN in the product topology. RN is second countable
and hence �rst countable with basis

B =

(Y
n

Un : Un = (an; bn) with an; bn 2 Q and Un = R for all but �nitely many n
)

However, with the uniform topology stemming from metricD (x; y) = sup
k
d (�k (x) ; �k (y))

is �rst countable but not second countable. To see this, we can use the following:

Lemma 238 If X is second countable and A � X is a discrete subspace. Then,
A is countable.

Proof. Let B be a countable basis for X. For each a 2 A, there exists Ba 2 B
such that Ba\A = fag. Consider the function f : A �! B with f (a) = Ba. By
construction, if a; b 2 A are distinct, then Ba 6= Bb and so f is injective hence
A is countable.
Now, to show that the RN with the uniform topology is not second count-

able, consider A =
�
x 2 RN : �k (x) 2 f0; 1g 8k 2 N

	
. That is, A is the set of

sequences which contain only zero or one. If x; y 2 A are distinct, then 9k such
that �k (x) 6= �k (y) so that D (x; y) = 1. Hence A has the discrete topology.
To show that A is uncountable, assume the contrary: then A = fa1; a2; :::g. Let
p 2 A such that �k (p) 6= �k (ak) =) p 62 A

Theorem 239 Let (X; �) be a topological space.

1. If X is �rst countable and B � X, then B is �rst countable

2. If X is second countable and B � X, then B is second countable

3. If C is countable and fXigi2C is a collection of �rst countable topological
spaces, then

Y
i2C

Xi is �rst countable

4. If C is countable and fXigi2C is a collection of second countable topological
spaces, then

Y
i2C

Xi is second countable
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Only proofs for second countable will be demonstrated. The other will follow
Proof. (2) Let D be a countable basis for X and let B � X and D0 =
fU \B : U 2 Dg. We now show that D0 is a basis: if a 2 B, then 9U 2 D
such that a 2 D and so a 2 U \ B. Suppose e1; e2 2 D and a 2 e1 \ e2. Then
9d1; d2 2 D such that e1 = d1\B and e2 = d2\B and so a 2 d1\d2 =) 9d3 2
D such that a 2 d3 � d1 \ d2 and so if e3 = d3 \B so that a 2 e3 � e1 \ e2.
(4) Let Fi be a countable basis for Xi for each i 2 C and let

F =

(Y
i2C

Ui : Ui 2 Fi and Ui = Xi for all but �nitely many i

)

We �rst need to check that every element of F is open in the product topology
on

Y
i2C

Xi. Clearly, if y 2
Y
i2C

Xi, then 9f 2 F such that y 2 f with f =

U1 � X2 � X3 � :::. Let f1; f2 2 F . Then, f1 \ f2 is of the form
Y
i2C

U i1 \ U i2

where U i1; U
i
2 2 Fi and U i1 \ U i2 = Xi for all but �nitely many i. If y 2 f1 \ f2,

then for each i, there is U i3 2 Fi (or U i3 = Xi) such that �i (y) 2 U3i � U1i \U2i .
Therefore, y 2

Y
i2C

U i3 �
Y
i2C

U i1 \ U i2 = f1 \ f2. F is countable since Fi and C

are countable.

Theorem 240 Let X be a second countable topological space.

1. If C is an open cover of X, then C contains a countable subcover (Lin-
delöf)

2. X is separable

Proof. (1) Let fBng be a countable basis for X and let C be an open cover
of X. De�ne A = fn 2 N : 9U 2 C such that Bn � Ug. For each n 2 A, let
Cn 2 C be a set such that Bn � Cn. We need to show that fCn : n 2 Ag is
a cover. fCn : n 2 Ag is certainly countable. Let x 2 X. Choose U 2 C such
that x 2 U . Since U is open, 9n 2 N such that x 2 Bn � U , so n 2 A and
hence x 2 Bn � Cn so fCng is a cover.
(2) Let xn 2 Bn. Let D = fxng. This is a dense subset. To show this,

consider y 2 X and U 3 y be a neighborhood of y. Then, 9n such that
x 2 Bn � U and so xn 2 U . So, each neighborhood of y intersects D, so y 2 D.
Since y was arbitrary, X = D
Neither one of these imply that X is second countable. As an example, con-

sider Rl, the real numbers with the lower limit topology withB = f[a; b) : a; b 2 Rg.
Then, Rl is �rst countable: let x 2 Rl. Consider

�
[x; x+ 1

n ) : n 2 N
	
. It is easy

to see that for any basis, the set
�
[x; x+ 1

n ) : n 2 N
	
is a local basis. However,

Rl is not second countable. Suppose that B0 is a basis for Rl. For each x 2 Rl,
we know that 9Bx 2 B0 such that x 2 Bx � [x; x+ 1). If we can show that for
di¤erent reals x; y, Bx 6= By, holds. x 2 Bx but x 62 By. Rl is separable since
Q is dense in R. It is also Lindelöf.
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8.2 Separability Axioms

De�nition 241 If (X; �) is a T1 space, then X is called regular if for each
a 2 X and each B � X closed and not containing a, there are disjoint open sets
U and V such that a 2 U and B � V .

De�nition 242 If (X; �) is a T1 space, then X is called normal if for every
A;B � X closed and disjoint, there are disjoint open sets U and V such that
A � U and B � V .

Theorem 243 Let (X; �) be a T1 space. Then,

1. X is regular () for each a 2 X and each neighborhood U containing a,
there is a neighborhood V of a containing a such that a 2 V � U .

2. X is normal() for each closed A � X and each open set U with A � U ,
there is an open set V � A such that A � V � U .

Proof. (1 =) )
Let X be regular. Let a 2 X and let U with a 2 U be a neighborhood of a.

Let B = U c. Then, B is closed and disjoint from a and so we can �nd disjoint
open sets V and W such that a 2 V and B � W . Let y 2 B. Then, W is a
neighborhood of y disjoint from V and so y 62 V so B \ V = ; and that V � U
(1 (= ). Let a 2 X and B � X be closed not containing a. Let U = Bc be

an open set containing a. So there is a neighborhood V of a with a 2 V such
that V � U . Let W = V

c
. It is easy to see that V and W are disjoint open sets

so that a 2 V and B �W .

Theorem 244 1. A subspace of a Hausdor¤ space is Hausdor¤

2. A subspace of a regular space is regular

3. Product of Hausdor¤ Spaces is Hausdor¤

4. Product of regular spaces is regular

Proof. (1) If X is Hausdor¤ and B � X and a; b 2 B are distinct points, then
there are disjoint open (in X) U; V such that a 2 U and b 2 V but then if we let
U 0 = B\U and V 0 = B\V , then these are disjoint open (in B) sets containing
a; b respectively.
(2) Let B � X. So, B is T1. Let a 2 B and C � B be a closed (in B) set

not containing a. Then, C \ B = C and so a 62 C. So, these are open (in X)
disjoint sets U; V so that a 2 U and C � V . Then, U 0 = B \U and V 0 = B \V
and so a 2 U 0 and C � V 0 sets are disjoint and open.
(3) Let u; v 2

Y
�2A

X� be distinct points. That, if u = (u�)�2A and v =

(v�)�2A, then 9� 2 A such that u� 6= v� . Since X� is Hausdor¤, 9U� and
V� open in X� , disjoint with u� 2 U� and v� 2 V� . Let U = ��1� (U�) and
V = ��1� (V�).
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(4) Let fX�g�2A be a family of regular saces. X is Hausdor¤ so X is T1.
Let x = (x�)�2A 2 X and let U be a neighborhood of x. Choose a basis

element of form
Y
�2A

U� such that x 2
Y
�2A

U� � U . Since x� 2 U�, we can �nd

a neighborhood V� of x� such that x 2 V� � U�. If U� = X�, then V� = X�,
then V =

Y
�2A

V� is open in X and V =
Y
�2A

V� and so x 2 V � U so X is

regular.

Example 245 Rl, reals with lower limit topology, has basis f[a; b) : a; b 2 Rg.
Then, Rl is normal and hence regular and Hausdor¤. Rl is T1 since R is T1
with standard topology and Rl is �ner. Let A;B � Rl be disjoint closed sets.
For each a 2 A, there is a basis element [a; xa) that is disjoint from B. Let
U =

[
a2A

[a; xa). Then, A � U . Repeat construction for B to get V � B. If

U \ V 6= ;, then 9a 2 A; b 2 B such that [a; xa) \ [b; xb) 6= ; so that a 2 [b; xb)
and b 2 [a; xa), an impossibility.

Example 246 R2l is regular but not normal, called the Sorgenfrey Plane. Sup-
pose that R2l is normal. Let L = f(x;�x) : x 2 Rlg. This is just a diagonal line
y = �x. Because Rl is Hausdor¤, L is closed in R2l . L is a discrete subspace
of R2l . Let A � L and so LnA is closed in L. So, LnA is also closed in R2l .
For each A � L, let UA and VA be disjoint open sets such that A � UA and
LnA � VA. Let D = Q2. D is dense in R2l . De�ne a map � : 2L �! 2D by
� (A) = D\UA, � (;) = ; and � (L) = D. This map is injective: let A � L be a
proper subset. � (A) is neither empty nor D because D dense and so D\UA 6= ;
and D \ VA 6= ;. Let B � L be a proper subset with A 6= B. WLOG, assume
x 2 A but x 62 B. Then, x 2 LnB =) x 2 VB and so x 2 UA \ VB. This set is
open so 9c 2 D\ (UA \ VB) so c 2 D\UA but c 62 D\UB. Hence � is injective.
Thus, we can �nd an injective map  : 2D �! L and  � � = 2L �! L is
injective, a contradiction. The injective map  is possible since D is countable
and L is uncountable. The injective map  may be de�ned on for E � N by
E 7�! � ai

10i with ai = 0 if i 62 E and 1 otherwise.

Theorem 247 Let (X; �) be a topological space such that X is regular and
second countable, then X is normal.

Proof. Let X be regular with countable basis C. Let A;B � X be closed and
disjoint. For each a 2 A, we can choose a neighborhood U of a and is disjoint
from B. Since X is regular, there is a neighborhood V 3 a such that V � U .
We can choose a basis element D 2 C such that a 2 D � V and so we can let
fDng be the collection of basis elements constructed as above. fDng is an open
cover of A whose closures are disjoint from B. Similarly, we can construct fEng
of B. Let D =

[
Dn and E =

[
En so D and E are open sets that contain A

and B respectively. There may exist k such that Dk \ Ek 6= ;. For each n, let

D0
n = Dnn

n[
i=1

Ei, E0n = Enn
n[
i=1

Di, D0 =
[
D0
n and E

0 =
[
E0n. Let a 2 A.
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Then, 9n 2 N such that a 2 Dn but for each i, 1 � i � n, we know that Ei is
disjoint from A hence the new collection is still an open cover of A.

Theorem 248 Let (X; �) be a metrizable topological space, then X is normal.

Proof. If A;B � X are closed and disjoint, we can de�ne a continuous function
f (x) = d(x;A)

d(x;A)+d(x;B) . The sets U = f�1
��
�1; 13

��
and V = f�1

��
2
3 ;1

��
give

us our required separation.

Theorem 249 Let (X; �) be a compact, Hausdor¤ topological space. Then, X
is normal.

Proof. If a 2 X and B � X is closed not containing a. Then, B is compact
and we can separate it from a by open sets. Thus, X is regular. Now for A and
B closed and disjoint, for each a 2 A, de�ne Ua and Va with open and disjoint
sets a 2 Ua and B � Va. Notice that fUaga2A is a cover for A so we can �nd
fUu1 ; :::; Uung covering A and fVa1 ; :::; Vang. The union of these sets and the
union of fUu1 ; :::; Uung and intersection of fVa1 ; :::; Vang gives us the required
sets.

Theorem 250 (Urhysohn Metrization Theorem) If X is regular and sec-
ond countable, then X is metrizable.

It does not follow that a normal space is metrizable.
To prove this, we will need what�s called the Urhysohn�s (Urj-jon) Lemma:

Theorem 251 If X is normal, A;B � X are closed and disjoint sets and
[a; b] � R is an interval, then there is continuous function f : X �! [a; b] so
that f (A) = fag, f (B) = fbg

Proof. It su¢ ces to work with the closed interval [0; 1]. Let P = Q \ [0; 1].
De�ne, for each p 2 P , an open set Up so that if q 2 P and p < q, then Up � Uq.
We will need to use induction.
For the base case, since P is countable, we can have P = fp1; :::g with p1 = 1

and p2 = 0. Let Up1 = U1 = XnB. Next, since A is closed and A � U1, we can
use normality of X to �nd U0 such that A � U0 � U0 � U1.
Let Pn = fp1; :::; png. Assume that we have de�ned Up for each p 2 Pn. We

need to de�ne Upn+1 . Since Pn+1 = Pn[fpn+1g is a totally ordered subset of Q,
every element of Pn+1 has an immediate predeccessor and immediate successor
other than the smallest element of Pn+1. We can let p and q be the immediate
predeccessor and successor respectively of pn+1. By construction, Up � Uq and
by normality, 9Upn+1 (open) such that Up � Upn+1 � Upn+1 � Uq.
To complete the inductive process, we need to show that if s; t 2 Pn+1 and

s < t, then Us � Ut. If s; t 2 Pn, then the statement holds by default. If
s = pn+1, then t 2 Pn and t � q and so Us � Uq � Ut. Similarly, if t = pn+1,
similar argument works.
Thus, if s; t 2 P , then 9n such that s; t 2 Pn so Us � Ut.
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As a formality, we will let Up = ; if p < 0 and Up = X if p > 1.
Next, for each x 2 X, de�ne Q (x) = fp 2 Q : x 2 Upg. By construction,

Q (x) is non-empty and Q (x) � (0;1). De�ne f : X �! [0; 1] by f (x) =
inf Q (x). If a 2 A, then A � U0 and so 0 2 Q (a) and so inf Q (a) = 0 and so
f (a) = 0. If b 2 B � XnU1 and Up � Up � U1 for all p � 1 and B � XnUp for
all p � 1 so p 62 Q (b) = (1;1) for all p < 1 and so f (b) = 1.
We now need to show f is continuous. This will follow if f satis�es the

following:

1. If x 2 Ur, then f (x) � r. Equivalently, if f (x) > r then x 62 Ur

2. If x 62 Ur, then f (x) � r. Equivalently, if f (x) < r, then x 2 Ur

To see this, let a 2 X and let (c; d) � R such that f (a) 2 (c; d). We will �nd
a neighborhood U of a such that f (U) � (c; d). Pick p; q 2 Q with the property
that c < p < f (a) < q < d. Let U = UqnUp be an open set. Since f (a) < q,
then a 2 Uq. Also, p < f (a), so that a 62 Up. Let d 2 U . Then, d 2 Uq � Up
and f (d) � q < d and d 2 Up so f (d) � p < c and so f (d) 2 (c; d).
Now, to prove 1, if x 2 Ur, then x 2 Us for s > r and so (r;1) � Q (x) and

so f (x) � r. For 2, if x 62 Ur, then x 62 Us for s < r and so f (x) � r.
This does not hold for regular spaces: that is, in a regular space, you can�t

separate using continuous functions. For this, we need a few more de�nitions:

De�nition 252 If X is a T1 space, then X is completely regular if for each
a 2 X and each B � X closed set not containing a, there is a continuous
function f : X �! [0; 1] so that f (a) = 0 and f (B) = f1g.

So, a normal space is completely regular, an immediate consequence of
Urhysohn�s lemma and thus is regular.

Theorem 253 If X is completely regular and B � X is a subspace, then B is
completely regular.

Proof. Let a 2 B and C � B be closed such that a 62 C. Then, C = C \B and
a 62 C. Since X is completely regular, there is a continuous function f : X �!
[0; 1] such that f (a) = 0 and f

�
C
�
= f1g. Let f jB : B �! [0; 1]. Then, f jB is

continuous and f jB (a) = f (a) = 0 and f jB (C) = f jB
�
C \B

�
= f

�
C
�
= f1g.

Theorem 254 If fX�g�2A is a collection of completely regular spaces, then the
product in the product topology is completely regular.

Proof. Let B � X =
Y
�2A

X� be closed such that x 62 B. Choose a basis

element
Y
�2A

U� with U� = X� for all but �nitely many A so that x 2
Y
�2A

U�

and
Y
�2A

U� is disjoint from B. Let F = f� : U� 6= X�g. For each � 2 F , choose
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continuous f j� : X� �! [0; 1] so that f� (x�) = 1 and f� (X�nU�) = f0g. Let
'� : X �! [0; 1] be given by f� � ��. De�ne f (x) =

Y
�2F

'� (x) =
Y
�2F

f� �

�� (x) =
Y
�2F

f� (x�) = 1. Observe that '� vanishes outside of �
�1
� (U�) andY

�2A
U� =

\
�2F

��1� (U�) and so f vanishes outside
Y
�2A

U� so f (B) = f0g.

Theorem 255 (Urhyson�s Metrization Theorem) If X is regular and sec-
ond countable, then X is metrizable

If X is a topological space and A � X is a subspace and f : A �! R
is continuous, can you extend f continuously to X? Not always. Consider
A = (0;1) and f (x) = 1

x . This cannot be extended continuously to 0. Things
change a little if A is closed but not quite. There is a cool proof with a good
mix of calculus and topology called Tietza Extension Theorem.
For its proof, we need to understand convergence of a sequence of functions in

a topological setting. Consider a sequence ffng1n=1 of functions fromX to R. For
now, we do not need a topology on X. If we have another function f : X �! R,
then ffng1n=1 is said to converge to f point-wise if limn!1

fn (x) = f (x) for each

x 2 X (check quanti�er placement). This is the weakest possible notion of
convergence.
If ffng1n=1 is a sequence of continuous functions (i.e. X has a topology) and

converges pointwise to f , is f continuous? Not necessarily. Let X = [0; 1] and
fn : [0; 1] �! [0; 1] with fn (x) = xn. The function f : X �! [0; 1] de�ned by
f (x) = 0 if x 2 [0; 1) and 1 otherwise is the point-wise limit of ffng1n=1. This,
point-wise convergence takes away continuity of the limit. The problem here is
that for each number x, we have to go extremely far out in n. This indicates
that for �nding that N in convergence is independent of x.
If we want the limits to be continuous as well, we could de�ne convergence of

ffng1n=1 to f uniformly if for all x, limn!1
fn (x) = f (x). The N does not depend

on x. Inherent in the proof is the use of a metric for uniform convergence!

Theorem 256 If ffng1n=1 is a sequence of continuous functions and f : X �!
R is a function such that for each x, lim

n!1
fn (x) = f (x), then f is continuous.

Proof. Let � > 0. Choose N 2 N so that jfn (x)� f (x)j < �
3 for n � N .

Let m � N and let U be a neighborhood of x such that if y 2 U , then
jfm (x)� fm (y)j < �

3 . Now, for y 2 U so that jf (x)� f (y)j � jf (x)� fm (x)j+
jfm (x)� fm (y)j+ jfm (y)� f (y)j < �
Now, consider f : A �! [�r; r] continuous with A closed in a topological

space X. If f is continuous, then we can de�ne a continuous g : X �! R
such that

1. (a) jg (x)j < 1
3r (says how big g is allowed to be)
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(b) jg (a)� f (a)j � 2
3r for all a 2 A (says distance of points from g and

f are not too big, either, implying that g is relatively close to f)

Proof. To show this, take the interval [�r; r] and chop it into three equally-sized
closed intervals I1 =

�
�r;� 1

3r
�
, I2 =

�
� 1
3r;

1
3r
�
and I3 =

�
1
3r; r

�
. Thenm B =

f�1 (I1) and C = f�1 (I3) are closed in A and hence closed and disjoint subsets
in X. We can then yse Urhysohn�s lemma to construct g : X �!

�
� 1
3r;

1
3r
�
so

that g (B) =
�
� 1
3r
	
and g (C) =

�
1
3r
	
. This satis�es (a).

For (b), we need to consider three cases. If a 2 B, then f (a) 2 I1 and
g (a) = � 1

3r. If a 2 C, then f (a) 2 I3 and g (a) = 1
3r. If a 62 B and a 62 C,

then f (a) 2 I2 and, by construction, g (a) 2 I2.

Theorem 257 (Tietza Extension Theorem) If (X; �) is a normal topolog-
ical space and A is a closed in X, then

1. If f : A �! [a; b] is continuous, then there is a continuous extension
f : X �! [a; b] of f

2. If f : A �! (a; b) is continuous, then there is a continuous extension
f : X �! (a; b) of f

Proof. (1)We will prove for [�1; 1]. For f : A �! [�1; 1], we can use Urhyson�s
lemma to construct g1 : X �!

�
� 1
3 ;

1
3

�
as above so that jf (a)� g1 (a)j < 2

3 for
each a 2 A. Apply claim to f�g1 which is a function from A to

�
� 2
3 ;

2
3

�
to con-

struct g2 : X �! R so that jg2 (x)j < 1
3
2
3 and j(f � g1) (a)� g2 (a)j <

2
3
2
3 ... and

construct gn+1 : X �! R so that jgn+1 (x)j < 1
3

�
2
3

�n
and jf (a)� g1 (a)� :::� gn+1 (a)j <�

2
3

�n+1
. That is, we have a sequence fgi : X �! [�1; 1]g. Let g : X �! R

be given by g (x) =
1X
i=1

gi (x) so that jg (x)j �
1X
i=1

jgi (x)j � 1
3

1X
i=1

�
2
3

�i�1
=

1
3

�
1

1� 2
3

�
= 1

3

�
1
1
3

�
= 1 so g : X �! [�1; 1] is well-de�ned. We now show

that g is continuous. Let sn (x) =
nX
i=1

gi (x). Then, sn �! g point-wise. Let

k > n where k; n 2 N. Then, jsk (x)� sn (x)j =
�����

kX
i=n+1

gi (x)

����� �
kX

i=n+1

jgi (x)j <

kX
i=n+1

�
2
3

�i�1
<

1X
i=n+1

�
2
3

�i�1
=
�
2
3

�n
. Thus, jg (x)� sn (x)j <

�
2
3

�n
. Now let

� > 0. Pick N such that
�
2
3

�N
< � so that if n � N , then jg (x)� sn (x)j <�

2
3

�N
< � independent of x so that sn �! g uniformly. Since each sn are con-

tinuous, then g is also continuous. Since jf (a)� sn (a)j <
�
2
3

�n
by construction

and sn (a) �! g (a), then jf (a)� g (a)j <
�
2
3

�n
for any n so g (a) = f (a)

(2) Since (�1; 1) � [�1; 1], we can �nd g : X �! [�1; 1] so that g (a) = f (a)
for any a 2 A. Let D = g�1 (f�1; 1g). Since f�1; 1g is closed in [�1; 1], then
D is closed in X. D is disjoint from A (since g (a) = f (a) 2 (�1; 1)). Use
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Urhyson�s lemma to �nd continuous function h : X �! [0; 1] such that h (D) =
f0g and h (A) = f1g. Let f : X �! (�1; 1) be given by f (x) = h (x) g (x).
This function is continuous as it is the product of continuous functions and if
x 2 D, then f (x) = 0 and if a 2 A, then f (a) = h (a) g (a) = f (a)

9 Complete Spaces

De�nition 258 Let (X; d) be a metric space. Let fxng1n=1 be a sequence in X.
fxng1n=1 is said to be a Cauchy sequence if for every � > 0, 9N 2 N such that
d (xn; xm) < � whenever n;m � N

Theorem 259 If (X; d) is a metric space and fxng1n=1 is a sequence in X
convergent to x. Then, fxng1n=1 is Cauchy

Proof. Since xn �! x, 9N 2 N such that d (x; xn) < �=2 so that if n;m � N ,
d (xn; xm) � d (x; xn) + d (xm; x) < �
The converse is not generally true. If it is, then (X; d) is said to be complete.

Example 260 Rnf0g is not complete: consider
�
1
n

	1
n=1

. We know that 1n �!
0 so

�
1
n

	1
n=1

is Cauchy but is not convergent in Rnf0g

Example 261 (�1; 1) is also not complete: the sequence
�
1� 1

n

	1
n=1

converges
to 1 which is not in the set

Example 262 Q is also not complete. Since
p
2 62 Q but f1; 1:4; 1:414; 1:4142; :::g

is a Cauchy sequence since for n > m, jxn � xmj < 10�m

Lemma 263 (X; d) is complete if and only if if every Cauchy sequence has a
convergent subsequence

Proof. ( =) ) Trivial
((= ) Let fxng1n=1 be Cauchy with a subsequence fxnig

1
n=1 convergent to

x. Let � > 0. Choose N so that if m;n � N , then d (xn; xm) < �
2 . Choose i 2 N

so that ni � N and d (xni ; x) < �=2. So, d (xn; x) � d (xn; xni) + d (x; xni) < �
for n � N .

Lemma 264 If (X; d) is a complete metric space and A � X is closed, then A
is complete.

Proof. Let fxng1n=1 be a Cauchy sequence in A. Then, fxng
1
n=1 is a Cauchy

sequence in X so that 9x such that xn ! x 2 X. Since A is closed and
fxng1n=1 � A, it follows that x 2 A

Theorem 265 For k � 1, Rk is complete.
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Proof. Let fxng1n=1 be Cauchy. Then, 9N 2 N such d (xn; xm) � 1 so the
subsequence fxng1n=N � N1 (xN ) so there is a subsequence xni ! x 2 N1 (xN )
so (X; d) is complete.
RJ , for J uncountable, is not metrizable in the product topology. If J is

countable, then RN is complete. To show this, we use the following lemma.

Lemma 266 Let fX�g�2A be a collection of topological spaces and let X =Y
�2A

X�. Then fxng1n=1 ! x 2 X () f�� (xn)g1n=1 ! �� (x) for each �

Proof. ( =) ) fxng1n=1 ! x =) �� : X �! X� is continuous and �� (xn)!
�� (x)

((= ) Let x 2 X and let U 3 x be a basis neighborhood. So, U =
Y
�2A

U�

where U� = X� for all � 2 AnF where F is some �nite subset of A. For each
� 2 F , f�� (xn)g1n=1 ! �� (x). Since x 2 U =) �� (x) 2 U� so 9N� 2 N so
that if n � N�, then �� (xn) 2 U�. Let N = max

�2F
fN�g. If n � N , then for

� 2 F , �� (xn) 2 U� and if � 2 AnF , then �� (xn) 2 U� = X� and so xn 2 U .
Since U is a basis element, xn ! x.
And now for a proof of the claim.

Proof. Let RN be equipped with the product topology. For a; b 2 R, de-
�ne d (a; b) = min (ja� bj ; 1). This is a metric. Let x = (x1; x2; :::) and

y = (y1; y2; :::). De�ne D (x; y) = sup
i2N

n
d(xi;yi)

i

o
. Then,

�
RN; D

�
is com-

plete. Let fxng1n=1 be a Cauchy sequence. Observe tht if x; y 2 RN, then
d (�i (x) ; �i (y)) � iD (x; y). Since fxng1n=1 is Cauchy. Let � > 0. 9N 2 N such
that for m;n � N , D (xn; xm) < �

i =) d (�i (x) ; �i (y)) � � so f�i (xn)g1n=1 is
also Cauchy for each i. Hence there exists a limit point xi of f�i (xn)g1n=1. If
we let x = (x1; x2; :::) and use the lemma above.

9.1 Completion of Spaces

We can also complete a metric space. Intuitively, this is done by �adding�limit
points so that every Cauchy sequence converges. Of course we can�t include
elements in the set on our own accord but what we can do is make the set
�equal�to another complete subset of another space. This �equality�is not the
true equality which we are wired to think of and is based on the de�nition of
a type of isomorphism which follows this paragraph. This strange �equality�
of sets makes the two sets indiscernable with respect to their structure and
properties but the substance itself di¤ers. For instance, as is known, the set
Q is constructed from Z� (Z� f0g). The removal of 0 ensures that zero is
excluded in the denominator. The resulting set Q is not TRULY equal to an
extension of the set of integers so that it is unfair to state that Z � Q, strictly
speaking. Z happens to a single set whereas Q is the Cartesian product of
both. What can actually be said is that Z�f1g� Q. However, there exists an
isomorphism between Z�f1g and Z, so that the sets are equal in their properties
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and structure but not substance. For all practical purposes, people usually don�t
beat about the bush and simply state Z � Q, which is safe to say because of
the concept of isomorphism. To make the point relatable to completion, it is
not true, strictly speaking, that �Q = R because Q has holes in it and we have
absolutely no authority to add points to complete the set of rational numbers
but what we can do is make the set Q isomorphic to subset of complete set.
Thus, while we�re not really adding points, we�re still making the set complete by
accounting for the missing holes, which is why we have the colloquial �addition
of points�.
Here is the promised de�nition:

De�nition 267 A mapping T from a metric space (X; d) into
�
X̂; d̂

�
is said

to be an isometry if T 8x; y 2 X; d̂(T (x) ; T (y)) = d(x; y): Two metric spaces
are said to be isometric or isomorphic as metric spaces if there is a bijective
isometry between them.

If such a bijective mapping T : X ! X̂ can be found, then X is said to be
isometric with X̂. This is the isomorphism for two metric spaces. Intuitively, an
isometry preserves distances so nearby points in one space and equivalently near
in another metric space. Remember, in metric spaces, one is concerned with
distance between two points so that if two metric spaces have the same structure
and properties, i.e. are isometric, then the distance between two points must
be conserved and nothing else matters �not the names of the points, at least.
In order to complete any metric space, we can show that it is isomorphic

to a dense subspace of a complete metric space and that this complete metric
space must necessarily exist. Furthermore, this metric space is unique (up to
isomorphism).

Theorem 268 If (X; d) is a metric space then there is a complete metric space
(X 0; d0) such that i : (X; d) �! (X 0; d0) is an isometric embedding.

That is, for a metric space (X; d), there exists a complete metric space�
X̂; d̂

�
which has a subspace W that is isometric with X̂ such that �W = X̂.

Furthermore, this space is unique except for isometries.

Proof. First, we focus on the construction of
�
X̂; d̂

�
. Let xn and �xn be Cauchy

sequences in X. We will call two Cauchy sequences equivalent if they have the
same limit i.e.

lim
n!1

d (xn; �xn) = 0

This will be written as (xn) � (�xn) : We can then gather all such equivalent
sequences and form an equivalent class. Indeed, (xn) � (xn) is trivial, so this
relation is re�exive. Also, since the arguments of a metric function are symmet-
ric, the relation � is symmetric. Finally, if (xn) � (yn) and (yn) � (zn), we
have

d (xn; zn) � d (xn; yn) + d (xn; yn)
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Taking limits on both sides and using the fact that the metric function is always
positive, we have

lim
n!1

d (xn; zn) = 0

so that (xn) � (zn), implying transitivity. Thus, we can have for ourselves
an equivalence class x̂ = f�xng of Cauchy sequences. We can collect all such
equivalence classes x̂; ŷ; ::: and form the set X̂. For this set, we can have the
metric function

d̂ (x̂; ŷ) = lim
n!1

d (xn; yn)

where xn 2 x̂ and yn 2 ŷ. Note that this is not equal to zero since xn and yn are
members of a di¤erent equivalence class. To show that this limit is well-de�ned
or that this de�nition is sensible and not ambiguous with di¤erent results for
the same choice of inputs, we will �rst show that this limit exists and then show
that it is independent of the choice of representatives. First, we have

d (xn; yn) � d (xn; xm) + d (xm; ym) + d (ym; yn)

=)
d (xn; yn)� d (xm; ym) � d (xn; xm) + d (ym; yn)

Similarly,
d (xm; ym) � d (xm; xn) + d (xn; yn) + d (yn; ym)

=)
d (xm; ym)� d (xn; yn) � d (xm; xn) + d (yn; ym)

=)
� (d (xm; xn) + d (yn; ym)) � d (xn; yn)� d (xm; ym)

this is basically b � a and �b � a so that we have jaj � b. Hence,

jd (xn; yn)� d (xm; ym)j � d (xn; xm) + d (ym; yn)

Now, since xn is Cauchy, we have d (xn; xm) < �=2 and similarly d (ym; yn) <
�=2. This in turn implies that for n;m > N

jd (xn; yn)� d (xm; ym)j < �

so that
lim
n!1

d (xn; yn) = lim
m!1

d (xm; ym)

Hence, d̂ (x̂; ŷ) is just as valid for any Cauchy sequence. Now, we prove that�
X̂; d̂

�
is a metric space. d̂ (x̂; ŷ) = 0 () lim

n!1
d (xn; yn) = 0 () lim

n!1
xn =

lim
n!1

yn so that (xn) � (yn), making them members of the same equivalence

class. Since members of an equivalence class are either disjoint or the same,
therefore x̂ = ŷ. Next, since d (xn; yn) � 0; we have d̂ (x̂; ŷ) � 0. Furthermore,
d (xn; yn) = d (yn; xn) so that d̂ (x̂; ŷ) = d̂ (ŷ; x̂). Finally,

d (xn; zn) � d (xn; yn) + d (yn; zn)
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so that d̂ obeys the triangle inequality.
We have just proved that for any metric space (X; d), we will have another

metric space (X̂; d̂) by accounting for the limits of the Cauchy sequences, made
possible by clumping all Cauchy sequences with common limits. Let W � X̂
and let T : X �!W be a mapping such that T (a) = â where â is an equivalence
class of constant Cauchy sequences. Here, W is a subclass of constant Cauchy
sequences. Since if two sequences are both constant and converge to the same
limit, then the two sequences are equal. Thus, every equivalence class of constant
Cauchy sequences will be a singleton so that b̂ will only contain the Cauchy
sequence (b; b; :::). We will now prove that this is an isometry.
First, notice that the mapping is clearly onto. This can be understood by

recalling how we arrived at X̂ and hence W . Next, for T (b1) = T (b2), we have
b̂1 = b̂2 so that the mapping is one-to-one. Hence T is bijective. Finally, T is
an isometry since

d̂ (T (a) ; T (b)) = d̂
�
â; b̂
�
= lim

n!1
d (an; bn) = d (a; b)

To show that this W is dense in X̂. For that, we need to show that the limit
points of W are in X̂. That is, if x̂ 2 X̂, we should have d̂(x̂; x) < � 8� > 0
contained in W for x 2 W . For x̂ 2 X and (xn) 2 x̂. Now, for any Cauchy
sequence xn the inequality

d (xn; xN ) < �=2

will be valid 8� > 0 whenever n > N . For the constant sequence

(xN ; xN ; :::) = x̂N 2W

we have
d̂(x̂; x) = lim

n!1
d (xn; xN ) � �=2 < �

so that every neighbourhood of x̂ will contain a point of W .
To show that X̂ is complete, let (x̂n) be any Cauchy sequence in X̂. Now,

since W is dense in X̂, every point x̂n 2 X̂ and 8� > 0; we can �nd a point
ẑn 2W so that d̂(x̂n; ẑn) < �. We can choose this � = 1=n so that the sequence
(ẑn) becomes Cauchy. This can be observed as follows:

d̂(ẑm; ẑn) � d̂(ẑm; x̂m) + d̂(x̂m; x̂n) + d̂(x̂n; ẑn)

< 1=m+ d̂(x̂m; x̂n) + 1=n

Since the element of W , ẑn; is Cauchy, (zm) = T�1 (ẑm) is also Cauchy in X.
If (zm) is contained in the class x̂; then

d̂(x̂n; x̂) � d̂(x̂n; ẑn) + d̂(ẑn; x̂)

< 1=n+ d̂(ẑn; x̂)

= 1=n+ lim
m!1

d (zn; zm)
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Since the sequence (zm) is an element of the equivalence class of Cauchy se-
quences x̂ and ẑn is an equivalence class of Cauchy sequences and is contained
in W , we have (zn; zn; zn; :::) 2 ẑn and thus the inequality can be made as small
as we like, implying that the limit of x̂n is x̂

If
�
~X; ~d

�
is another complete space with a subspace ~W which is isometric

with X such that ~W is dense in ~X. Then, for any ~x; ~y 2 ~X , we apply the same
method as above to get��� ~d (~x; ~y)� ~d (~xn; ~yn)

��� � ~d (~x; ~xn) + ~d (~y; ~yn)

so that ~d (~xn; ~yn) �! ~d (~x; ~y), implying that X̂ and ~X are isometric.

10 Function Spaces

Now that we�ve seen what Rk and RN are, what can we say about RA, where
A is any arbitrary set? In particular, if A is uncountable, then the product
topology on RA is not metrizable, a fact that we will take on faith. Thus, it
makes no sense to talk about completeness for RA.
Let us de�ne a di¤erent metric on RA that does not give rise to the product

topology and then show that RA is complete. Recall, that RA = ff : A �! Rg :=
HomSet (A;R). Let (Y; d) be a metric space. We need to put a metric on
Y A = HomSet (A; Y ). It can be shown that d (x; y) = min fd (x; y) ; 1g is a met-
ric, bounded and metrically equivalent to d. Thus,

�
Y; d

�
is complete () (Y; d)

is complete. If f; g 2 HomSet (A; Y ) = Y A, then � (f; g) = sup
a2A

d (f (a) ; g (a)).

Why not use sup
a2A

d (f (a) ; g (a))? Then the metric is not bounded so that the

supremum might not exist. Note that � (f; g) � 1. � is called the uniform
metric.

Theorem 269
�
Y A; �

�
is a complete metric space.

Proof. We �rst show that � is a metric.
D1
Since d (f (a) ; g (a)) � 0 for each a 2 A, we must have sup

a2A
d (f (a) ; g (a)) �

0. Thus, � (f; g) � 0.
D2
� (f; f) = sup

a2A
d (f (a) ; f (a)) = sup

a2A
f0g = 0. Conversely, if � (f; g) = 0, then

sup
a2A

d (f (a) ; f (a)) = 0. In particular, since d (f (a) ; g (a)) � 0 for each a 2 A,

so that sup
a2A

d (f (a) ; g (a)) = 0 =) d (f (a) ; g (a)) = 0. Again, this holds for

each a 2 A. =) f (a) = g (a) 8a 2 A =) f = g.
D3
� (f; g) = sup

a2A
d (f (a) ; g (a)) = sup

a2A
d (g (a) ; f (a)) = � (g; f)
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D4
Since d (f (a) ; g (a)) � d (f (a) ; h (a)) + d (h (a) ; g (a)) for each a 2 A

=) d (f (a) ; g (a)) � d (f (a) ; h (a)) + sup
a2A

d (h (a) ; g (a))

� sup
a2A

d (f (a) ; h (a)) + sup
a2A

d (h (a) ; g (a))

=) sup
a2A

d (f (a) ; g (a)) � sup
a2A

d (f (a) ; h (a)) + sup
a2A

d (h (a) ; g (a))

=) � (f; g) � � (f; h) + � (h; g)

Let ffng be a Cauchy sequence in Y A. For � > 0, 9N 2 N such that ifm;n �
N , � (fn; fm) < �. So, for each a 2 A, if m;n � N , then d (fn (a) ; fm (a)) �
� (fn; fm) < � so ffn (a)g is a Cauchy sequence for each a 2 A. Since Y
is complete, 9ya 2 Y such that fn (a) ! ya. De�ne f 2 HomSet (A; Y ) by
f (a) = ya. We claim that fn ! f uniformly.
First, we show ordinary convergence. Let � > 0. We can pick N 2 N

so that if m;n � N , then � (fn; fm) <
�
2 and d (fn (a) ; fm (a)) <

�
2 . Since

fn (a) ! f (a) = ya, it follows that for n � N , d (fn (a) ; f (a)) � �
2 < � so for

each a and each n � N , d (fn (a) ; f (a)) � �
2 so that � (fn; f) �

�
2 < � and so

fn ! f .
The convergence is uniform because for each � > 0, we can �nd N 2 N such

that for n � N , � (fn; f) < � =) d (fn (a) ; f (a)) < � for all a 2 A if n � N .

We can get a richer situation if we endow A with a topology. If this is
the case, then we can de�ne C (A; Y ) � HomSet (A; Y ), the set of continuous
functions from A to Y . We can use either metric on Y : insert last homework
problem here.

Theorem 270 (C (A; Y ) ; �) is a complete metric space.

Proof. Let ffng1n=1 be a Cauchy sequence in C (A; Y ). Then, the sequence
in Cauchy in HomSet (A; Y ) and so 9f 2 HomSet (A; Y ) such that fn ! f
uniformly. f is continuous by a previous result (uniform limit theorem).
This also shows that C (A; Y ) is closed in HomSet (A; Y )!
There is another nice space, B (A; Y ) � Y A, the space of all bounded

functions. Recall that f : A �! Y is bounded if diamf (A) < 1. This
admits a nicer metric: � (f; g) = sup

a2A
d (f (a) ; g (a)). It can be shown that

� (f; g) = min (1; � (f; g)) so that (B (A; Y ) ; �) is also complete. Observe that if
A is compact, then C (A; Y ) � B (A; Y ).
In the preceeding section, we proved that of (X; d) is a metric space then

there is a complete metric space (X 0; d0) such that i : (X; d) �! (X 0; d0) is an
isometric immersion. If (X; d) is a metric space and � : (X; d) �! (X 0; d0)
is an isometric embedding into a complete metric space, then � (X) � X 0 is
called a metric completion of X. The proof in the preceeding section employs
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an equivalence class of Cauchy sequences. This turns out to be a model for R.
Let us do something di¤erent and furnish a proof of the same theorem.
Proof. Let b 2 X. Given a 2 X, de�ne 'a : X �! R by 'a (b) = d (x; a) �
d (x; b).
We �rst prove the jd (x; a)� d (x; b)j � d (a; b), the reverse triangle inequal-

ity.
Since d (x; a) � d (x; b) + d (b; a), and d (x; b) � d (x; a) + d (a; b) =)
d (x; a)� d (x; b) � d (a; b) and d (x; b)� d (x; a) � d (a; b) respectively.
Now, for every a 2 X, 'a 2 B (X;R) since j'a (x)j � jd (x; a)� d (x; b)j �

d (a; b) so that j'a (x)j is bounded, independent of x.
We�ve seen that B (X;R) is complete. De�ne � : X �! B (X;R) by

� (a) = 'a. We need to show that � is an isometric embedding. To show
this, let u; v 2 X. Then, � (� (u) ;� (v)) = � ('u; 'v) = sup

a2X
d ('u (a) ; 'v (a)) =

sup
a2X

j'u (a)� 'v (a)j

= sup
a2X

jd (a; u)� d (u; v)� d (a; v) + (a; v)j = sup
a2X

jd (a; u)� d (a; v)j � d (u; v)

so � (� (u) ;� (v)) � d (u; v). Conversely, if a = u, then jd (a; u)� d (u; v)j =
d (u; v) so d (u; v) � sup

a2X
jd (a; u)� d (a; v)j = � (� (u) ;� (v)). Thus, we have

that � (� (u) ;� (v)) = d (u; v).

10.1 Characterization of Compactness in Metric Spaces

When is a metric space compact? Of course when every sequence has a con-
vergent subsequence and if every open cover has a �nite subcover and if every
in�nite set has a limit. If X � Rk, then X is compact () X is closed and
bounded. More generally, X is compact if and only if X is complete and totally
bounded.

De�nition 271 Let (X; d) be a metric space. (X; d) is totally bounded if for
every � > 0, X can be covered by �nitely many �-balls.

All compact metric spaces are totally bounded: the cover of �-balls on each
point has a �nite subcover.

All totally bounded sets are bounded: coverX with 1
2 -balls

n
N 1

2
(x1) ; ::::; N 1

2
(xn)

o
.

If a; b 2 X, then 9i; j 2 f1; :::; ng so that a 2 N 1
2
(xi) and b 2 N 1

2
(xj) and so

d (a; b) � 1 + d (xi; xj). Then, diam (X) � 1 + max d (xi; xj)
The converse is not true:

�
R; d

�
is bounded because we can cover R with a

single ball but not totally bounded since, for example, we cannot cover R usingn
N 1

2
(x1) ; ::::; N 1

2
(xn)

o
.

We will characterize compactness in a variety of function spaces C (X;Y )
with (Y; d) being a complete metric space.
The following is a generalization of the Bolzano-Weierstrass Theorem.

Theorem 272 Let (X; d) is a metric space and A � X be a subspace. Then A
is compact if and only if A is complete and totally bounded.
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Proof. ( =) ) Let A � X be compact and let fxng1n=1 be a Cauchy sequence
in A. Since A is compact, it is sequentially compact so that fxng1n=1 has a
convergent subsequence in A. Thus, A is complete. Since every compact space
is totally bounded, we are done.
((= ) Let A � X be complete and totally bounded. Pick a sequence

fxng1n=1 in A. We will show that A is sequentially compact by (a) using totally
boundedness to construct a Cauchy sequence and (b) apply completeness to see
that it converges.
We can cover A with �nitely may 1-balls so there is a 1-ball, B1, which

contains in�nitely many terms of our sequence. Let J1 = fn 2 N : xn 2 B1g.
By construction, jJ1j = 1. We can cover A with �nitely many 1=2-balls so
there is a 1=2-ball B2 such that J2 = fn 2 J1 : xn 2 B2g is in�nite. Inductively,
we can �nd 1/k-ball, Bk, such that Jk = fn 2 Jk�1 : xn 2 Bkg is in�nite and so
we have a collection J1 � J2 � :::. Let n1 2 J1. Since J2 is in�nite, pick n2 2 J2
so that n2 > n1. Inductively, pick nk 2 Jk such that nk > nk�1. We now need
to show that fxnkg is Cauchy. Let � > 0. Pick N 2 N such that 1

N < �
2 . If

k; l � N , then xk and xl live in a 1
N -ball and so d (xk; xl) <

2
N < �.

De�nition 273 Let (X; �) be a topological space and let (Y; d) be a metric space.
Let F � C (X;Y ). F is called equicontinuous at x if for every � > 0, there
is a neighborhood U 3 x so that if y 2 U and f 2 F , d (f (x) ; f (y)) < �. F is
equicontinuous if it equicontinuous at every x 2 X.

Example 274 For a �nite collection ff1; :::; fng of continuous functions, this
set is always equicontinuous because for each a 2 X and each 1 � i � n and
for each � > 0, there exists a neighborhood Ui of a such that if x 2 Ui, then

d (fi (x) ; fi (a)) < �. Letting U =
n\
n=1

Ui satis�es the de�nition: since x 2 Ui

for each i, then x 2 U .

On the other hand, consider F = ffn 2 C (R;R) : n 2 Ng by fn (x) = xn.
Let a = 1 and let � > 0, y = 1+ �

2 2 (1� �; 1 + �). Then fn (y) =
�
1 + �

2

�n !1
and so d (fn (a) ; fn (y))!1 so there is no such neighborhood of 1.

Theorem 275 Let (X; �) be a topological space and let (Y; d) be a metric space.
If F � C (X;Y ) is totally bounded with uniform metric, then F is equicontinu-
ous.

Proof. Suppose that F is totally bounded and let � > 0 and let a 2 X and let
� = min

�
�
3 ;

1
3

�
. Cover F by �nitely many �-balls fN� (f1) ; :::; N� (fn)g where �

is such that each fi is continuous at a. That is, we can pick a neighborhood U
of a so that if x 2 U , then d (fi (x) ; fi (a)) < �. Let f 2 F . Then 9i so that
� (f; fi) < � and so d (f (a) ; fi (a)) < � but � < 1

3 < 1 and d (fi (y) ; f (y)) <
� for every y 2 X. Let x 2 U . Then, d (f (x) ; f (a)) � d (f (x) ; fi (x)) +
d (fi (x) ; fi (a)) + d (fi (a) ; f (a)) < � + � + � � �.
The converse is not generally true unless both X;Y are compact.
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Theorem 276 Let (X; �) be a compact topological space and let (Y; d) be a
compact and complete metric space. If F � C (X;Y ) is equicontinuous, then it
is totally bounded with either uniform metric or the sup metric.

Proof. Since X is compact, C (X;Y ) � B (X;Y ) and F is totally bounded with
respect to the sup metric, �, if and only if it is totally bounded with respect
to � since small balls are the same in both metrics and so, we will only work
with �. For each � > 0, if we let � = �

4 and for any point a 2 X, there is a
neighborhood Ua of a such that if x 2 Ua and f 2 F , then d (f (x) ; f (a)) < �.
Since X is compact, we can cover X with U = fU1; :::; Ung where Ui is a
neighborhood of ai. Next, since Y is compact, we can cover Y with �nitely many
sets V = fV1; :::; Vmg of diameter< �. Let J = f� : f1; :::; ng �! f1; :::;mgg.
Observe that jJ j <1, and that for each f 2 F , f (ai) 2 Vj for some 1 � j � n.
For each f 2 F , we can de�ne a function � 2 J by � (i) = j. Let J 0 be
the collection of all such functions

�
� 2 J : 9f 2 F : f (ai) 2 V�(i); 1 � i � n

	
.

Then, jJ 0j < 1. For each � 2 J 0, pick f� 2 F so that f� (ai) 2 V�(i). We
claim that fN� (f�) : � 2 J 0g is a cover of F . Let f 2 F . Pick a function in
J 0 that is induced by f . Pick � so that f (ai) 2 V�(i). We now claim that
� (f; f�) < � for f 2 N� (f�). Let x 2 X. Then, 9i 2 f1; :::; ng so that x 2 Ui.
Then, for each x 2 X, d (f (x) ; f� (x)) � d (f (x) ; f (ai)) + d (f (ai) ; f� (ai)) +
d (f� (ai) ; f� (x)) < 3� =

3
4� and � (f; f�) �

3
4� < �.

For a compact topological space X, when is F � C (X;Rn) compact?

De�nition 277 Let (X; �) be a topological space. For F � C (X;Rn), F is
point-wise bounded if for every a 2 X, Fa = ff (a) : f 2 Fg is bounded.

Theorem 278 (Ascoli�s Theorem) Let (X; �) be a compact topological space
and F � C (X;Rn). Then, F is compact if and only if F is equicontinuous and
point-wise bounded.

Proof. ( =) ) Since X is compact, continuous functions from X to Rn are all
bounded, so we can use the sup metric. Since F is compact, it is also totally
bounded and hence F is equicontinuous and so F is also equicontinuous. Since
F is totally bounded, it is also bounded and F bounded, by de�nition, implies
that F a is bounded for each a 2 X so that Fa is also bounded.
((= ) Suppose that F is equicontinuous and point-wise bounded. Then, F

is also equicontinuous and is point-wise bounded. To see this, �rst we prove that
F is equicontinuous. Let a 2 X and let � > 0 be given. By equicontinuity of
F , we can choose a neighborhood U containing a such that d (f (x) ; f (a)) < �

3

for all x 2 U and any f 2 F . Choose g 2 F . Then, we can choose f 2 F
such that � (f; g) < �

3 and for each x 2 U , d (g (x) ; g (a)) � d (g (x) ; f (x)) +
d (f (x) ; f (a)) + d (f (a) ; g (a)) < �

3 +
�
3 +

�
3 = �.

To show that F is point-wise bounded, choose M so that diam (Fa) < M .
Pick g; g0 2 F and f; f 0 2 F such that � (f; g) < 1 and � (f 0; g0) < 1. Then,
d (g (x) ; g0 (a)) � d (g (x) ; f (a)) + d (f (a) ; f 0 (a)) + d (f 0 (a) ; g0 (a)) < 1 +M +
1 =M + 2. Hence diam

�
F
�
< M + 2.
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Next, if we knew that the codomain is compact, then we would be done.
Let us tweak the set-up. We need to show that there is a compact subset
Y � Rn such that

[
g2F

g (x) � Y . In other words, F � C (X;Y ). Since

F is equicontinuous for each a 2 X, we can pick Ua containing a so that
d (f (x) ; f (a)) < 1 for all x 2 Ua and f 2 F . Since X is compact, we can
cover X with �nitely many fUa1 ; :::; Uang. Since F is point-wise bounded, we

can pick a constant K so that
n[
i=1

F ai � NK (0). Now, we can observe that, for

x 2 X, there has to be i 2 f1; :::; ng such that x 2 Uai . Now, for g 2 F , we have
d (0; g (x)) � d (0; g (ai))+d (g (ai) ; g (x)) < K+1 so that

[
g2F

g (x) � NK+1 (0).

Letting Y = NK+1 (0) shows us that F � C (X;Y ). Since F is a closed subset
of the complete metric space (C (X;Y ) ; �), we see that

�
F ; �

�
is a complete

metric space. Since F is equicontinous, F is totally bounded. Since
�
F ; �

�
is

complete and totally bounded, then
�
F ; �

�
is compact.

Note that the only property of Rn used in the proof is that NK+1 (0) is
compact. That is, a set in which balls have compact closure. We can now move
forward with a few generalizations of Ascoli�s theorem. For that, a de�ntion.

De�nition 279 Let F � C (X;Rn). Then, F vanishes at 1 if for every � >
0, there is a compact C � X so that if x 2 XnC, then jf (x)j = d (0; f (x)) < �
for every f 2 F . If F = ffg, then we say that f vanishes at 1.

We�ve seen that if X is locally compact and Hausdor¤, then it has a unique
one-point compacti�cation in Y . How is this related to the previous de�nition?
We can take each function F � C (X;Rn) and enlarge its domain. The goal is
to take a function f 2 F � C (X;Rn) which vanishes at in�nity, and extend it
to f 2 C (Y;Rn) such that f (x) = f (x) if x 2 X and 0 otherwise. This tells us
the following:

1. If f vanishes at 1, then f 2 C (Y;Rn)

2. If F vanishes uniformly at1, thenG =
�
f 2 C (Y;Rn) : f 2 F

	
is equicon-

tinuous at 1

This suggests the following:

Theorem 280 Let (X; d) be a locally compact and Hausdor¤ space and let F �
C (X;Rn). Then, F is compact if and only if F is equicontinuous and point-wise
bounded.

Proof. If F is compact, then F is equicontinuous and point-wise bounded:
cover F with

�
N �

2
(f1) ; :::; N �

2
(fn)

	
. For each f 2 F , there is i 2 f1; :::; ng

such that � (f; fi) < �
2 . For each i 2 f1; :::; ng, there is a compact Ci so that
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if x 2 XnCi, then jf (xi)j < �=2. Let C =
n[
i=1

Ci, then if x 2 XnC, then

jf (x)j = jf (x)� fi (x) + fi (x)j � jf (x)� fi (x)j + jfi (x)j < �, so that F van-
ishes uniformly at1. De�ne � : F �! C (Y;Rn) by � (f) = f . � is an isometric
embedding with closed image of �. In this case, �

�
F
�
is equicontinuous and

point-wise bounded. Thus, �
�
F
�
is compact. But �

�
F
�
= �

�
F
�
and also F

is also compact. Let f; g 2 F , then sup
a2Y

d
�
f (a) ; g (a)

�
= sup

a2X
d (f (a) ; g (a)) and

so �X (f; g) = sup
a2F

d (f (a) ; g (a)) = sup
a2�(F)

d
�
f (a) ; g (a)

�
= �Y

�
f; g
�
.

Now, suppose that ffng in F and
�
fn
	
�! f 2 �

�
F
�
� C (Y;Rn). We

need to show that f = g for some g 2 F . Observe that f (1) = 0 so that
g = f jX . Does g vanish at in�nity? Let � > 0. We know that fn ! f uniformly
and so there is N 2 N such that if n � N , then

��fn (x)� f (x)�� < �
2 for any

x 2 Y . We also know that for each n 2 N, there is a compact C � X so that
if x 2 XnC, then jfn (x)j < �=2 so that jf (x)j = jf (x)� fn (x) + fn (x)j �
jf (x)� fn (x)j + jfn (x)j < �=2 + �=2 = �. Hence f vanishes at in�nity. Thus,
g 2 F and so �

�
F
�
is closed.

There is another topology on the space of functions, other than the uniform
topology, which is better suited for applications, speci�cally Homotopy Theory.
Let (Y; d) be a metric space and let X be a topological space. We have

already seen that there is one topology, called uniform topology, on C (X;Y ).
We�ll now impose a slightly weaker condition: instead of saying that the func-
tions are uniformly continuous everywhere, we letK � X be compact, � > 0 and

we also let f 2 Y X . Consider the setBK (f; �) =
�
g 2 Y X : sup

x2K
d (f (x) ; g (x)) < �

�
.

Then, there is a map from Y X �! Y K given by restriction BK (f; �) is the pre-
image of a ball in C (K;Y ). This topology is called the topology of compact
convergence (CC topology) or even the topology of uniform convergence
on compact sets.

Lemma 281 Let B =
�
BK (f; �) : K � X, K compact; � > 0; f 2 Y X

	
. Then,

B is a basis for a topology.

Proof. If f 2 Y X , then f 2 BK (f; �) for any compact K and � > 0. Next,
suppose that h 2 BK (f; �) \BK0 (f 0; �0).
For g 2 BK (f; �) and � = ��sup

x2K
d (f (x) ; g (x)), let � 2 BK (g; �). sup

x2K
d (� (x) ; g (x)) <

� and =) sup
x2K

d (� (x) ; g (x))+sup
x2K

d (f (x) ; g (x)) < �. Since sup
x2K

d (� (x) ; f (x)) �

sup
x2K

d (� (x) ; g (x)) + sup
x2K

d (f (x) ; g (x)), we must have sup
x2K

d (� (x) ; g (x)) < �.

Then, we have BK (g; �) � BK (f; �).
Similarly, for g 2 BK0 (f; �0) and for �0 = �0 � sup

x2K0
(f (x) ; g (x)), then

BK0
�
g; �0

�
� BK0 (f; �0). Now letD = min

�
�; �0

�
, thenBK[K0 (g;D) � BK (g; �) �

BK (f; �). Similarly, BK[K0 (g;D) � BK0 (f; �0). Thus, BK[K0 (g;D) � BK0 (f; �0)\
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BK (f; �). Clearly, h 2 BK[K0 (g;D) since sup
x2K[K0

d (h (x) ; g (x)) � sup
x2K[K0

d (h (x) ; g (x)) <

D.

Theorem 282 If ffn : X �! Y g �! f for some f 2 Y X in the CC topology,
then for each compact K � X, �K : Y X �! Y K with �K (f) = f jK , then
BK (f; �) = �

�1
K (B (�K (f) ; �))

Proof. Follows from de�nition

De�nition 283 A space X is called compactly generated if, A 2 2X is open
whenever A \K is open in K for each compact K � X.

This de�nition works if open is replaced with closed.

Lemma 284 Let (X; �) be a either a locally compact topological space or �rst
countable topological space. Then, (X; �) is compactly generated.

Proof. If X is locally compact and A � X, so that A\K is open in K for every
compact K � X, we need to show that A\K is open in K. Let x 2 A. Choose
a neighborhood U 3 x and pick a compact K � X such that x 2 U � K. By
hypothesis, A\C is open in C and A\U = (A \ C)\U is open in U but since
U is open, A \ U is open in X and so A \ U is a neighborhood of X in A. So,
x is an interior point.
Assume that X is �rst countable. Let B be a set such that B \K is closed

for every compact set K � X. We need to show that B is closed. Let x 2 B.
Pick a sequence fxng in B that converges to x. Let K = fxn : n 2 Ng [ fxg.
Then, K is compact and B \ K is closed, by hypothesis and is closed in K.
Thus, x 2 B and so B is closed.
We know that the restriction of a continuous function is continuous. Is

the converse true? That is, can you extend a continuous function? Here is one
possibility:

Lemma 285 Let (X; �) be a compactly generated topological space and let f 2
Y X such that f jK is continuous for any compact K in X. Then, f is continuous.

Proof. Let V � Y be open and let U = f�1 (V ). We need to show that U is
open. For each compact K � X, we know that f jK 2 Y K is continuous and so
UK = f j�1K (V ) is open in K. But UK = U \K. Thus, U is open in K for any
compact K. Since X is compactly generated, therefore U is open in X and so,
f is continuous.

Theorem 286 Let (X; �) be a compactly generated topological space and Y X

have the CC topology. Then, C (X;Y ) is closed in Y X

Proof. Let f 2 C (X;Y ). We need to show that f is continuous. It su¢ ces
to show that f jK is continuous for every compact K � X. Let K be such a
set (compact in X!). For each n 2 N, BK

�
f; 1n

�
intersects C (X;Y ). Let fn 2
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C (X;Y ) be an element of the intersection. By construction, � (fnjK ; f jK) < 1
n

and so, fnjK ! f in the uniform topology on C (X;Y ). We know that uniform
limits of continuous functions is continuous. Then, f jK is continuous.
In all of the preceeding discussion, we�ve used the fact that the codomain has

a metric. Can we drop this assumption? Let (X; �X) and (Y; �Y ) be topological
spaces and let K � X be compact and U � Y be open. De�ne S (K;U) =�
f 2 Y X : f (K) � U

	
. This gives a notion of how close two functions are,

without relying on a metric. Such a collection does not form a basis, sadly.
Good news is that it is a sub-basis for a topological called the compact open
topology. Is this the same as the CC topology?

Theorem 287 If (X; d) is a metric space, then compact open topology is the
same as the CC-topology.

Proof. Let S = fS (K;U) : K � Xg be the sub-basis for the compact open
topology and let f 2 S (K;U) 2 S. Since f is continuous, f (K) is compact
subset of U . Let � = d (f (c) ; Y nU). Then, BK

�
f; �2

�
� S (K;U) and so, the

topology of compact convergence is �ner than the compact open topology.
For the converse, consider a basis element BK (f; �). Each point x 2 X lies in

a neighborhood Vx so that f
�
Vx
�
has diameter < �. Let Vx = f�1

�
N �

4
(f (x))

�
.

Then, f
�
Vx
�
� N �

3
(f (x)) = Ux has diameter 2�3 . Since K is compact, cover K

with fVx1 ; :::; Vxng. Let Ki = K \ Vxi . Then, Ki is compact and f (Ki) � Uxi .
So, f 2 S (Ki; Ui). Finally, if g 2 S (Ki; Ui), then sup

x2Ki

d (f (x) ; g (x)) < � and

so
n\
i=1

S (Ki; Ui) � BK (f; �). Hence fS (Ki; Ui) : i 2 f1; :::; ngg is a subbasis.

Here are some nice properties these guys have. There is a map e : X �
C (X;Y ) �! Y with e (x; f) = f (x). This is simply the evaluation function. If
X is locally compact and Hausdor¤, then e is continuous. This can be viewed
as follows: since we have a continuous function f : X � Z �! Y , then we get
F : Z �! C (X;Y ) with F (z) = fz with fz (x) = f (x; z). Thus, F (z) (x) =
f (x; z). We can now state another result:

Theorem 288 If f : X � Z �! Y is continuous, then F : Z �! C (X;Y ) is
continuous. If X is locally compact and Hausdor¤, then the converse is true, as
well.

Corollary 289 Let (X; �X), (Y; �Y ) be topological spaces and let (C (X;Y ) ; �)
be the topology on continuous functions from X to Y . De�ne the evaluation map
e : X � (C (X;Y ) ; �) �! Y by e (x; f) = f (x). Show that, for any topology � ,
� is �ner than the compact open topology.

Proof. We know that, for topological spaces (X; �X), (Y; �Y ) ; (Z; �Z), then
f : X � Z �! Y is continuous tells us that F : Z �! (C (X;Y ) ; � c) is
continuous, where F (z) = fz for fz (x) = f (x; z) and � c is the compact open
topology . Thus, for e : (X; �X) � (C (X;Y ) ; �) �! (Y; �Y ) to be continuous,
we must have F : (C (X;Y ) ; �) �! (C (X;Y ) ; �

c
) is continuous, de�ned by
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F (f) = ef where and ef (x) = e (x; f) = f (x) for each x. That is, ef = f so
that F is the identity map. Since F is identity map and continuous, for each
open set in � c, we must have an open set in � . Thus, � c � � .

Example 290 A homotopy is a continuous function h : [0; 1] � [0; 1] �! Y
with the following properties: h (x; 0) = 0 (x), h (x; 1) = 1 (x) and h (0; t) = p
and h (1; t) = q, where p; q are end points of paths 0 and 1. Then, we can
have H : [0; 1] �! C ([0; 1] ; Y ) with H (t) = t de�ned by t (x) = H (x; t)
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